We prove the existence of infinitely many periodic solutions, as well as the presence of chaotic dynamics, for a periodically perturbed planar Liénard system of the form x' = y−F(x)+p(ωt), y' = −g(x). We consider the case in which the perturbing term is not necessarily small. Such a result is achieved by a topological method, that is by proving the presence of a horseshoe structure.
Chaotic dynamics in a periodically perturbed Liénard system / Papini, D.; Villari, G.; Zanolin, F.. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 32:11-12(2019), pp. 595-614.
Chaotic dynamics in a periodically perturbed Liénard system
Papini D.;
2019
Abstract
We prove the existence of infinitely many periodic solutions, as well as the presence of chaotic dynamics, for a periodically perturbed planar Liénard system of the form x' = y−F(x)+p(ωt), y' = −g(x). We consider the case in which the perturbing term is not necessarily small. Such a result is achieved by a topological method, that is by proving the presence of a horseshoe structure.File | Dimensione | Formato | |
---|---|---|---|
euclid.die.1571731511.pdf
Accesso riservato
Dimensione
436.73 kB
Formato
Adobe PDF
|
436.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PaViZa_prep.pdf
Accesso riservato
Dimensione
505.9 kB
Formato
Adobe PDF
|
505.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris