We prove the existence of infinitely many periodic solutions, as well as the presence of chaotic dynamics, for a periodically perturbed planar Liénard system of the form x' = y−F(x)+p(ωt), y' = −g(x). We consider the case in which the perturbing term is not necessarily small. Such a result is achieved by a topological method, that is by proving the presence of a horseshoe structure.

Chaotic dynamics in a periodically perturbed Liénard system / Papini, D.; Villari, G.; Zanolin, F.. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 32:11-12(2019), pp. 595-614.

Chaotic dynamics in a periodically perturbed Liénard system

Papini D.;
2019

Abstract

We prove the existence of infinitely many periodic solutions, as well as the presence of chaotic dynamics, for a periodically perturbed planar Liénard system of the form x' = y−F(x)+p(ωt), y' = −g(x). We consider the case in which the perturbing term is not necessarily small. Such a result is achieved by a topological method, that is by proving the presence of a horseshoe structure.
2019
32
11-12
595
614
Chaotic dynamics in a periodically perturbed Liénard system / Papini, D.; Villari, G.; Zanolin, F.. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 32:11-12(2019), pp. 595-614.
Papini, D.; Villari, G.; Zanolin, F.
File in questo prodotto:
File Dimensione Formato  
euclid.die.1571731511.pdf

Accesso riservato

Dimensione 436.73 kB
Formato Adobe PDF
436.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PaViZa_prep.pdf

Accesso riservato

Dimensione 505.9 kB
Formato Adobe PDF
505.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1316050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact