In this paper we present a predator-prey mathematical model for two biological populations which dislike crowding. The model consists of a system of two degenerate parabolic equations with nonlocal terms and drifts. We provide conditions on the system ensuring the periodic coexistence, namely the existence of two non-trivial non-negative periodic solutions representing the densities of the two populations. We assume that the predator species is harvested if its density exceeds a given threshold. A minimization problem for a cost functional associated with this process and with some other significant parameters of the model is also considered. © 2010 Elsevier Inc.

Coexistence and optimal control problems for a degenerate predator-prey model / Allegretto, W.; Fragnelli, G.; Nistri, P.; Papini, Duccio. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 378:2(2011), pp. 528-540. [10.1016/j.jmaa.2010.12.036]

Coexistence and optimal control problems for a degenerate predator-prey model

PAPINI, Duccio
2011

Abstract

In this paper we present a predator-prey mathematical model for two biological populations which dislike crowding. The model consists of a system of two degenerate parabolic equations with nonlocal terms and drifts. We provide conditions on the system ensuring the periodic coexistence, namely the existence of two non-trivial non-negative periodic solutions representing the densities of the two populations. We assume that the predator species is harvested if its density exceeds a given threshold. A minimization problem for a cost functional associated with this process and with some other significant parameters of the model is also considered. © 2010 Elsevier Inc.
2011
378
2
528
540
Coexistence and optimal control problems for a degenerate predator-prey model / Allegretto, W.; Fragnelli, G.; Nistri, P.; Papini, Duccio. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 378:2(2011), pp. 528-540. [10.1016/j.jmaa.2010.12.036]
Allegretto, W.; Fragnelli, G.; Nistri, P.; Papini, Duccio
File in questo prodotto:
File Dimensione Formato  
AlFraNiPa_040610.pdf

Accesso riservato

Dimensione 351.04 kB
Formato Adobe PDF
351.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1316034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact