We investigate local heat generation by molecules at the apex of polymer-embedded vertical antennas excited at resonant midinfrared wavelengths, exploiting the surface enhanced infrared absorption effect. The embedding of vertical nanoantennas in a non-absorbing polymer creates thermal isolation between the apical hotspot and the heat sink represented by the substrate. Vibrational mid-infrared absorption by strongly absorbing molecules located at the antenna apex then generates nanoscale temperature gradients at the surface. We imaged the thermal gradients by using a nano-photothermal expansion microscope, and we found values up to 10K/mu m in conditions where the radiation wavelength resonates with both the molecule vibrations and the plasmonic mode of the antennas. Values up to 1000 K/mu m can be foreseen at maximum quantum cascade laser power. The presented system provides a promising thermoplasmonic platform for antenna-assisted thermophoresis and resonant mid-infrared photocatalysis.

Nanoscale thermal gradients activated by antenna-enhanced molecular absorption in the mid-infrared / Mancini, A; Giliberti, V; Alabastri, A; Calandrini, E; De Angelis, F; Garoli, D; Ortolani, M. - In: APPLIED PHYSICS LETTERS. - ISSN 0003-6951. - 114:2(2019). [10.1063/1.5079488]

Nanoscale thermal gradients activated by antenna-enhanced molecular absorption in the mid-infrared

Garoli D;
2019

Abstract

We investigate local heat generation by molecules at the apex of polymer-embedded vertical antennas excited at resonant midinfrared wavelengths, exploiting the surface enhanced infrared absorption effect. The embedding of vertical nanoantennas in a non-absorbing polymer creates thermal isolation between the apical hotspot and the heat sink represented by the substrate. Vibrational mid-infrared absorption by strongly absorbing molecules located at the antenna apex then generates nanoscale temperature gradients at the surface. We imaged the thermal gradients by using a nano-photothermal expansion microscope, and we found values up to 10K/mu m in conditions where the radiation wavelength resonates with both the molecule vibrations and the plasmonic mode of the antennas. Values up to 1000 K/mu m can be foreseen at maximum quantum cascade laser power. The presented system provides a promising thermoplasmonic platform for antenna-assisted thermophoresis and resonant mid-infrared photocatalysis.
2019
114
2
Nanoscale thermal gradients activated by antenna-enhanced molecular absorption in the mid-infrared / Mancini, A; Giliberti, V; Alabastri, A; Calandrini, E; De Angelis, F; Garoli, D; Ortolani, M. - In: APPLIED PHYSICS LETTERS. - ISSN 0003-6951. - 114:2(2019). [10.1063/1.5079488]
Mancini, A; Giliberti, V; Alabastri, A; Calandrini, E; De Angelis, F; Garoli, D; Ortolani, M
File in questo prodotto:
File Dimensione Formato  
2019_APL_mancini.pdf

Accesso riservato

Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1315951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 5
social impact