Three-dimensional quantitative image analysis from synchrotron X-ray microcomputed tomography indicated a coarsening of the microstructure of magnesium potassium phosphate cements driven by crystallization of K-struvite from the first amorphous product. Porosity and pore surface area increased because of the progressive build-up of a network of elongated/tabular crystal domains, with density higher than the amorphous. The known increase in strength with time is thought to occur thanks to the overwhelming contribution of a developing interlocked lath-shaped microstructure. Combined X-ray and neutron diffraction texture analysis indicated that at least a fraction of K-struvite nucleates at the surface of MgO grains, suggesting the intervention of more than one crystallization mechanism. The detected weak texture, compatible with a nearly random orientation of crystallites, and the isotropic pore fabric, are beneficial with respect to crack propagation.
Microstructural evolution and texture analysis of magnesium phosphate cement / Viani, A.; Lanzafame, G.; Chateigner, D.; El Mendili, Y.; Sotiriadis, K.; Mancini, L.; Zucali, M.; Ouladdiaf, B.. - In: JOURNAL OF THE AMERICAN CERAMIC SOCIETY. - ISSN 0002-7820. - 103:2(2020), pp. 1414-1424. [10.1111/jace.16782]
Microstructural evolution and texture analysis of magnesium phosphate cement
Viani A.
;
2020
Abstract
Three-dimensional quantitative image analysis from synchrotron X-ray microcomputed tomography indicated a coarsening of the microstructure of magnesium potassium phosphate cements driven by crystallization of K-struvite from the first amorphous product. Porosity and pore surface area increased because of the progressive build-up of a network of elongated/tabular crystal domains, with density higher than the amorphous. The known increase in strength with time is thought to occur thanks to the overwhelming contribution of a developing interlocked lath-shaped microstructure. Combined X-ray and neutron diffraction texture analysis indicated that at least a fraction of K-struvite nucleates at the surface of MgO grains, suggesting the intervention of more than one crystallization mechanism. The detected weak texture, compatible with a nearly random orientation of crystallites, and the isotropic pore fabric, are beneficial with respect to crack propagation.File | Dimensione | Formato | |
---|---|---|---|
2020_6_Viani.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris