A way to measure the lower growth rate of phi : Omega x [0, infinity) -> [0, infinity) is to require t (sic) phi (x, t)t(-r) to be increasing in (0, infinity). If this condition holds with r = 1, theninf (u is an element of f+W1,phi (Omega)) integral(Omega) phi(x, vertical bar del u vertical bar) dxwith boundary values f is an element of W-1,W-phi (Omega) does not necessarily have a minimizer. However, if phi is replaced by phi(p), then the growth condition holds with r = p > 1 and thus (under some additional conditions) the corresponding energy integral has a minimizer. We show that a sequence (u(p)) of such minimizers converges when p -> 1(+) in a suitable BV-type space involving generalized Orlicz growth and obtain the Gamma-convergence of functionals with fixed boundary values and of functionals with fidelity terms.

Minimizers of abstract generalized Orlicz-bounded variation energy / Eleuteri, M.; Harjulehto, P.; Hasto, P.. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - (2023), pp. 1-15. [10.1002/mma.9042]

Minimizers of abstract generalized Orlicz-bounded variation energy

Eleuteri M.;
2023

Abstract

A way to measure the lower growth rate of phi : Omega x [0, infinity) -> [0, infinity) is to require t (sic) phi (x, t)t(-r) to be increasing in (0, infinity). If this condition holds with r = 1, theninf (u is an element of f+W1,phi (Omega)) integral(Omega) phi(x, vertical bar del u vertical bar) dxwith boundary values f is an element of W-1,W-phi (Omega) does not necessarily have a minimizer. However, if phi is replaced by phi(p), then the growth condition holds with r = p > 1 and thus (under some additional conditions) the corresponding energy integral has a minimizer. We show that a sequence (u(p)) of such minimizers converges when p -> 1(+) in a suitable BV-type space involving generalized Orlicz growth and obtain the Gamma-convergence of functionals with fixed boundary values and of functionals with fidelity terms.
2023
1
15
Minimizers of abstract generalized Orlicz-bounded variation energy / Eleuteri, M.; Harjulehto, P.; Hasto, P.. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - (2023), pp. 1-15. [10.1002/mma.9042]
Eleuteri, M.; Harjulehto, P.; Hasto, P.
File in questo prodotto:
File Dimensione Formato  
Math Methods in App Sciences - 2023 - Eleuteri.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 357.32 kB
Formato Adobe PDF
357.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1314767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact