This paper proposes SixPack v2, an enhanced version of the SixPack attack that allows to evade even state-of-the-art misbehavior detection systems. As the original SixPack, SixPack v2 is a dynamic attack targeting other C-ITS entities by simulating the sudden activation of the braking system with consequent activation of the Anti-lock Braking System. SixPack v2 achieves better evasion by improving the main phases of the attack (FakeBrake, Recovery, and Rejoin) through a novel path-reconstruction algorithm that generates a more realistic representation of the real vehicle trajectory. We experimentally evaluate the evasion capabilities of SixPack v2 using the F2MD framework on the LuSTMini city scenario, and we compared the detection performance of the F2MD framework on both versions of SixPack. Results show that SixPack v2 evades detection with a significantly higher likelihood with respect to the initial version of the attack, even against the latest version of F2MD.

SixPack v2: enhancing SixPack to avoid last generation misbehavior detectors in VANETs / Zoccoli, G. G.; Pollicino, F.; Stabili, D.; Marchetti, M.. - (2022), pp. 243-249. (Intervento presentato al convegno 21st IEEE International Symposium on Network Computing and Applications, NCA 2022 tenutosi a usa nel 2022) [10.1109/NCA57778.2022.10013565].

SixPack v2: enhancing SixPack to avoid last generation misbehavior detectors in VANETs

Zoccoli G. G.;Pollicino F.;Stabili D.;Marchetti M.
2022

Abstract

This paper proposes SixPack v2, an enhanced version of the SixPack attack that allows to evade even state-of-the-art misbehavior detection systems. As the original SixPack, SixPack v2 is a dynamic attack targeting other C-ITS entities by simulating the sudden activation of the braking system with consequent activation of the Anti-lock Braking System. SixPack v2 achieves better evasion by improving the main phases of the attack (FakeBrake, Recovery, and Rejoin) through a novel path-reconstruction algorithm that generates a more realistic representation of the real vehicle trajectory. We experimentally evaluate the evasion capabilities of SixPack v2 using the F2MD framework on the LuSTMini city scenario, and we compared the detection performance of the F2MD framework on both versions of SixPack. Results show that SixPack v2 evades detection with a significantly higher likelihood with respect to the initial version of the attack, even against the latest version of F2MD.
2022
21st IEEE International Symposium on Network Computing and Applications, NCA 2022
usa
2022
243
249
Zoccoli, G. G.; Pollicino, F.; Stabili, D.; Marchetti, M.
SixPack v2: enhancing SixPack to avoid last generation misbehavior detectors in VANETs / Zoccoli, G. G.; Pollicino, F.; Stabili, D.; Marchetti, M.. - (2022), pp. 243-249. (Intervento presentato al convegno 21st IEEE International Symposium on Network Computing and Applications, NCA 2022 tenutosi a usa nel 2022) [10.1109/NCA57778.2022.10013565].
File in questo prodotto:
File Dimensione Formato  
SixPack_v2_enhancing_SixPack_to_avoid_last_generation_misbehavior_detectors_in_VANETs.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 3.29 MB
Formato Adobe PDF
3.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1314406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact