Finite mixture models are flexible methods that are commonly used for model-based clustering. A recent focus in the model-based clustering literature is to highlight the difference between the number of components in a mixture model and the number of clusters. The number of clusters is more relevant from a practical stand point, but to date, the focus of prior distribution formulation has been on the number of components. In light of this, we develop a finite mixture methodology that permits eliciting prior information directly on the number of clusters in an intuitive way. This is done by employing an asymmetric Dirichlet distribution as a prior on the weights of a finite mixture. Further, a penalized complexity motivated prior is employed for the Dirichlet shape parameter. We illustrate the ease to which prior information can be elicited via our construction and the flexibility of the resulting induced prior on the number of clusters. We also demonstrate the utility of our approach using numerical experiments and two real world data sets.

Page, Garritt L., Massimo, Ventrucci e Maria, Franco-Villoria. "Informed Bayesian Finite Mixture Models via Asymmetric Dirichlet Priors" Working paper, 2023.

Informed Bayesian Finite Mixture Models via Asymmetric Dirichlet Priors

Maria Franco-Villoria
2023

Abstract

Finite mixture models are flexible methods that are commonly used for model-based clustering. A recent focus in the model-based clustering literature is to highlight the difference between the number of components in a mixture model and the number of clusters. The number of clusters is more relevant from a practical stand point, but to date, the focus of prior distribution formulation has been on the number of components. In light of this, we develop a finite mixture methodology that permits eliciting prior information directly on the number of clusters in an intuitive way. This is done by employing an asymmetric Dirichlet distribution as a prior on the weights of a finite mixture. Further, a penalized complexity motivated prior is employed for the Dirichlet shape parameter. We illustrate the ease to which prior information can be elicited via our construction and the flexibility of the resulting induced prior on the number of clusters. We also demonstrate the utility of our approach using numerical experiments and two real world data sets.
2023
Agosto
http://arxiv.org/abs/2308.00768v1
Page, Garritt L.; Ventrucci, Massimo; Franco-Villoria, Maria
Page, Garritt L., Massimo, Ventrucci e Maria, Franco-Villoria. "Informed Bayesian Finite Mixture Models via Asymmetric Dirichlet Priors" Working paper, 2023.
File in questo prodotto:
File Dimensione Formato  
2308.00768.pdf

Open access

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 6.68 MB
Formato Adobe PDF
6.68 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1314348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact