This paper presents a comparative analysis of different Machine Learning-based detection algorithms designed for Controller Area Network (CAN) communication on three different datasets. This work focuses on addressing the current limitations of related scientific literature, related to the quality of the publicly available datasets and to the lack of public implementations of the detection solutions presented in literature. Since these issues are preventing the reproducibility of published results and their comparison with novel detection solutions, we remark that it is necessary that all security researchers working in this field start to address them properly to advance the current state-of-the-art in CAN intrusion detection systems. This paper strives to solve these issues by presenting a comparison of existing works on publicly available datasets.

Comparison of Machine Learning-based anomaly detectors for Controller Area Network / Venturi, A.; Stabili, D.; Pollicino, F.; Bianchi, E.; Marchetti, M.. - (2022), pp. 81-88. (Intervento presentato al convegno 21st IEEE International Symposium on Network Computing and Applications, NCA 2022 tenutosi a usa nel 2022) [10.1109/NCA57778.2022.10013527].

Comparison of Machine Learning-based anomaly detectors for Controller Area Network

Venturi A.
;
Stabili D.;Pollicino F.;Marchetti M.
2022

Abstract

This paper presents a comparative analysis of different Machine Learning-based detection algorithms designed for Controller Area Network (CAN) communication on three different datasets. This work focuses on addressing the current limitations of related scientific literature, related to the quality of the publicly available datasets and to the lack of public implementations of the detection solutions presented in literature. Since these issues are preventing the reproducibility of published results and their comparison with novel detection solutions, we remark that it is necessary that all security researchers working in this field start to address them properly to advance the current state-of-the-art in CAN intrusion detection systems. This paper strives to solve these issues by presenting a comparison of existing works on publicly available datasets.
2022
21st IEEE International Symposium on Network Computing and Applications, NCA 2022
usa
2022
81
88
Venturi, A.; Stabili, D.; Pollicino, F.; Bianchi, E.; Marchetti, M.
Comparison of Machine Learning-based anomaly detectors for Controller Area Network / Venturi, A.; Stabili, D.; Pollicino, F.; Bianchi, E.; Marchetti, M.. - (2022), pp. 81-88. (Intervento presentato al convegno 21st IEEE International Symposium on Network Computing and Applications, NCA 2022 tenutosi a usa nel 2022) [10.1109/NCA57778.2022.10013527].
File in questo prodotto:
File Dimensione Formato  
Comparison_of_Machine_Learning-based_anomaly_detectors_for_Controller_Area_Network.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1311147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact