In an edge-coloring (proper) of a cubic graph, an edge is poor or rich, if the set of colors assigned to the edge and the four edges adjacent it, has exactly three or exactly five distinct colors, respectively. An edge is normal in an edge-coloring if it is rich or poor in this coloring. A normal k-edge-coloring of a cubic graph is an edge-coloring with k colors such that each edge of the graph is normal. We denote by chi(N)'(G) the smallest k, for which G admits a normal k-edge-coloring. Normal edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. It is known that proving chi(N)'(G) <= 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture. Moreover, Jaeger was able to show that it implies classical conjectures like Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Recently, two of the authors were able to show that any simple cubic graph admits a normal 7-edge-coloring, and this result is best possible. In the present paper, we show that any claw-free bridgeless cubic graph, permutation snark, tree-like snark admits a normal 6-edge-coloring. Finally, we show that any bridgeless cubic graph G admits a 6-edge-coloring such that at least 7/9 . vertical bar E vertical bar edges of G are normal. (C) 2019 Elsevier B.V. All rights reserved.
Normal 6-edge-colorings of some bridgeless cubic graphs / Mazzuoccolo, G; Mkrtchyan, V. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - 277:(2020), pp. 252-262. [10.1016/j.dam.2019.09.019]
Normal 6-edge-colorings of some bridgeless cubic graphs
Mazzuoccolo, G;Mkrtchyan, V
2020
Abstract
In an edge-coloring (proper) of a cubic graph, an edge is poor or rich, if the set of colors assigned to the edge and the four edges adjacent it, has exactly three or exactly five distinct colors, respectively. An edge is normal in an edge-coloring if it is rich or poor in this coloring. A normal k-edge-coloring of a cubic graph is an edge-coloring with k colors such that each edge of the graph is normal. We denote by chi(N)'(G) the smallest k, for which G admits a normal k-edge-coloring. Normal edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. It is known that proving chi(N)'(G) <= 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture. Moreover, Jaeger was able to show that it implies classical conjectures like Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Recently, two of the authors were able to show that any simple cubic graph admits a normal 7-edge-coloring, and this result is best possible. In the present paper, we show that any claw-free bridgeless cubic graph, permutation snark, tree-like snark admits a normal 6-edge-coloring. Finally, we show that any bridgeless cubic graph G admits a 6-edge-coloring such that at least 7/9 . vertical bar E vertical bar edges of G are normal. (C) 2019 Elsevier B.V. All rights reserved.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris