A perfectly one-factorable (P1F) regular graph is a graph admitting a partition of the edge-set into one-factors such that the union of any two of them is a Hamiltonian cycle. The case of cubic graphs is treated. The existence of a P1F cubic graph is guaranteed for each admissible value of the number of vertices. A description of this class was obtained by Kotzig in 1962. It is the purpose of the present paper to produce an alternative proof of Kotzig’s result.

A new description of perfectly one-factorable cubic graphs / S., Bonvicini; Mazzuoccolo, Giuseppe. - In: ATTI DEL SEMINARIO MATEMATICO E FISICO DEL'UNIVERSITÀ DI MODENA E REGGIO EMILIA. - ISSN 1825-1269. - 54:(2006), pp. 167-173.

A new description of perfectly one-factorable cubic graphs

Mazzuoccolo, Giuseppe
2006

Abstract

A perfectly one-factorable (P1F) regular graph is a graph admitting a partition of the edge-set into one-factors such that the union of any two of them is a Hamiltonian cycle. The case of cubic graphs is treated. The existence of a P1F cubic graph is guaranteed for each admissible value of the number of vertices. A description of this class was obtained by Kotzig in 1962. It is the purpose of the present paper to produce an alternative proof of Kotzig’s result.
2006
54
167
173
A new description of perfectly one-factorable cubic graphs / S., Bonvicini; Mazzuoccolo, Giuseppe. - In: ATTI DEL SEMINARIO MATEMATICO E FISICO DEL'UNIVERSITÀ DI MODENA E REGGIO EMILIA. - ISSN 1825-1269. - 54:(2006), pp. 167-173.
S., Bonvicini; Mazzuoccolo, Giuseppe
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1310834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact