We prove surface and volume mean value formulas for classical solutions to uniformly parabolic equations in divergence form. We then use them to prove the parabolic strong maximum principle and the parabolic Harnack inequality. We emphasize that our results only rely on the classical theory, and our arguments follow the lines used in the original theory of harmonic functions. We provide two proofs relying on two different formulations of the divergence theorem, one stated for sets with almost C^1-boundary, the other stated for sets with finite perimeter.
Mean value formulas for classical solutions to uniformly parabolic equations in the divergence form with non‐smooth coefficients / Malagoli, Emanuele; Pallara, Diego; Polidoro, Sergio. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 296:9(2023), pp. 4236-4263. [10.1002/mana.202100612]
Mean value formulas for classical solutions to uniformly parabolic equations in the divergence form with non‐smooth coefficients
Pallara, DiegoMembro del Collaboration Group
;Polidoro, Sergio
Membro del Collaboration Group
2023
Abstract
We prove surface and volume mean value formulas for classical solutions to uniformly parabolic equations in divergence form. We then use them to prove the parabolic strong maximum principle and the parabolic Harnack inequality. We emphasize that our results only rely on the classical theory, and our arguments follow the lines used in the original theory of harmonic functions. We provide two proofs relying on two different formulations of the divergence theorem, one stated for sets with almost C^1-boundary, the other stated for sets with finite perimeter.File | Dimensione | Formato | |
---|---|---|---|
ArXiv-MalagoliPallaraPolidoro-V2.pdf
Accesso riservato
Tipologia:
AO - Versione originale dell'autore proposta per la pubblicazione
Dimensione
382.82 kB
Formato
Adobe PDF
|
382.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris