Graded lattice scaffolds based on rhombic dodecahedral (RD) elementary unit cell geometry were manufactured in 316L stainless steel (SS) by laser powder bed fusion (LPBF). Two different strategies based on varying strut thickness layer-by-layer in the building direction were adopted to obtain the graded scaffolds: a) decreasing strut size from core to edge to produce the dense-in (DI) structure and b) increasing strut size in the same direction to produce the dense-out (DO) structure. Both graded structures (DI and DO) were constructed with specular symmetry with respect to the central horizontal axis. Structural, mechanical, and biological characterizations were carried out to evaluate feasibility of designing appropriate biomechanical performances of graded scaffolds in the perspective of bone tissue regeneration. Results showed that mechanical behavior is governed by graded geometry, while printing parameters influence structural properties of the material such as density, textures, and crystallographic phases. The predominant failure mechanism in graded structures initiates in correspondence of thinner struts, due to high stress concentrations on strut junctions. Biological tests evidenced better proliferation of cells in the DO graded scaffold, which in turn exhibits mechanical properties close to cortical bone. The combined control of grading strategy, printing parameters and elementary unit cell geometry can enable implementing scaffolds with improved biomechanical performances for bone tissue regeneration.

Improved biomechanical behavior of 316L graded scaffolds for bone tissue regeneration produced by laser powder bed fusion / Gatto, Maria Laura; Cerqueni, Giorgia; Groppo, Riccardo; Santecchia, Eleonora; Tognoli, Emanuele; Defanti, Silvio; Mattioli-Belmonte, Monica; Mengucci, Paolo. - In: JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS. - ISSN 1751-6161. - 144:(2023), pp. 105989-105999. [10.1016/j.jmbbm.2023.105989]

Improved biomechanical behavior of 316L graded scaffolds for bone tissue regeneration produced by laser powder bed fusion

Groppo, Riccardo;Tognoli, Emanuele;Defanti, Silvio;
2023

Abstract

Graded lattice scaffolds based on rhombic dodecahedral (RD) elementary unit cell geometry were manufactured in 316L stainless steel (SS) by laser powder bed fusion (LPBF). Two different strategies based on varying strut thickness layer-by-layer in the building direction were adopted to obtain the graded scaffolds: a) decreasing strut size from core to edge to produce the dense-in (DI) structure and b) increasing strut size in the same direction to produce the dense-out (DO) structure. Both graded structures (DI and DO) were constructed with specular symmetry with respect to the central horizontal axis. Structural, mechanical, and biological characterizations were carried out to evaluate feasibility of designing appropriate biomechanical performances of graded scaffolds in the perspective of bone tissue regeneration. Results showed that mechanical behavior is governed by graded geometry, while printing parameters influence structural properties of the material such as density, textures, and crystallographic phases. The predominant failure mechanism in graded structures initiates in correspondence of thinner struts, due to high stress concentrations on strut junctions. Biological tests evidenced better proliferation of cells in the DO graded scaffold, which in turn exhibits mechanical properties close to cortical bone. The combined control of grading strategy, printing parameters and elementary unit cell geometry can enable implementing scaffolds with improved biomechanical performances for bone tissue regeneration.
2023
144
105989
105999
Improved biomechanical behavior of 316L graded scaffolds for bone tissue regeneration produced by laser powder bed fusion / Gatto, Maria Laura; Cerqueni, Giorgia; Groppo, Riccardo; Santecchia, Eleonora; Tognoli, Emanuele; Defanti, Silvio; Mattioli-Belmonte, Monica; Mengucci, Paolo. - In: JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS. - ISSN 1751-6161. - 144:(2023), pp. 105989-105999. [10.1016/j.jmbbm.2023.105989]
Gatto, Maria Laura; Cerqueni, Giorgia; Groppo, Riccardo; Santecchia, Eleonora; Tognoli, Emanuele; Defanti, Silvio; Mattioli-Belmonte, Monica; Mengucci...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1751616123003429-main.pdf

embargo fino al 30/06/2025

Tipologia: Versione pubblicata dall'editore
Dimensione 5.53 MB
Formato Adobe PDF
5.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1308806
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact