In this paper we derive the Beveridge–Nelson (BN) decomposition and the state space representation for various multivariate (co)integrated time series subject to Markov switching in regime. Then we provide explicit expressions for the BN trend and cyclical components in terms of the matrices involved in the state space representation of the considered process. Our matrix expressions in closed form improve computational performance since they are readily programmable and greatly reduce the computational cost. Then we develop impulse-response function analysis and represent the BN trend component as a random walk. An empirical application on the world economy illustrates the feasibility of the proposed approach.

Trend and cycle decomposition of Markov switching (co)integrated time series / Cavicchioli, Maddalena. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - 32:(2023), pp. 1381-1406. [10.1007/s10260-023-00710-4]

Trend and cycle decomposition of Markov switching (co)integrated time series

Cavicchioli, Maddalena
2023

Abstract

In this paper we derive the Beveridge–Nelson (BN) decomposition and the state space representation for various multivariate (co)integrated time series subject to Markov switching in regime. Then we provide explicit expressions for the BN trend and cyclical components in terms of the matrices involved in the state space representation of the considered process. Our matrix expressions in closed form improve computational performance since they are readily programmable and greatly reduce the computational cost. Then we develop impulse-response function analysis and represent the BN trend component as a random walk. An empirical application on the world economy illustrates the feasibility of the proposed approach.
2023
32
1381
1406
Trend and cycle decomposition of Markov switching (co)integrated time series / Cavicchioli, Maddalena. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - 32:(2023), pp. 1381-1406. [10.1007/s10260-023-00710-4]
Cavicchioli, Maddalena
File in questo prodotto:
File Dimensione Formato  
final_pubb_SMA_2023.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1307686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact