One major drawback of excavation earth-based composite construction materials is the variability in excavation earth characteristics from site to site. This variability can affect certain physical properties, and, in turn, the design models used to create a structure. To solve this problem, a methodology has been developed to predict the physical properties of earth-based composites for any mix-design variation, which enables a robust structural design process. This new methodology has been tested for Shot-earth, a new class of earth-based composite material made using high rates of excavation earth, aggregates, and a low rate of stabilization if needed. Shot-earth is placed using a high-speed dry-mix process. The methodology was tested by preparing small, inexpensive specimens through a process that simulates the dry-process used to fabricate Shot-earth in the field. An adaptive technique, used in conjunction with the experimental methodology, allows for the identification of the variant of possible Shot-earth mix-designs that provides optimal physical properties for a specific project. This technique is potentially applicable to any type of earth-based composite. The proposed methodology’s reliability enables a fast and cost-effective detailing of Shot-earth constructions.

Changing the approach to sustainable constructions: An adaptive mix-design calibration process for earth composite materials / Franciosi, M.; Savino, V.; Lanzoni, L.; Tarantino, A. M.; Viviani, M.. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - 319:117143(2023), pp. 1-9. [10.1016/j.compstruct.2023.117143]

Changing the approach to sustainable constructions: An adaptive mix-design calibration process for earth composite materials

Franciosi M.;Savino V.;Lanzoni L.
;
Tarantino A. M.;
2023

Abstract

One major drawback of excavation earth-based composite construction materials is the variability in excavation earth characteristics from site to site. This variability can affect certain physical properties, and, in turn, the design models used to create a structure. To solve this problem, a methodology has been developed to predict the physical properties of earth-based composites for any mix-design variation, which enables a robust structural design process. This new methodology has been tested for Shot-earth, a new class of earth-based composite material made using high rates of excavation earth, aggregates, and a low rate of stabilization if needed. Shot-earth is placed using a high-speed dry-mix process. The methodology was tested by preparing small, inexpensive specimens through a process that simulates the dry-process used to fabricate Shot-earth in the field. An adaptive technique, used in conjunction with the experimental methodology, allows for the identification of the variant of possible Shot-earth mix-designs that provides optimal physical properties for a specific project. This technique is potentially applicable to any type of earth-based composite. The proposed methodology’s reliability enables a fast and cost-effective detailing of Shot-earth constructions.
2023
319
117143
1
9
Changing the approach to sustainable constructions: An adaptive mix-design calibration process for earth composite materials / Franciosi, M.; Savino, V.; Lanzoni, L.; Tarantino, A. M.; Viviani, M.. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - 319:117143(2023), pp. 1-9. [10.1016/j.compstruct.2023.117143]
Franciosi, M.; Savino, V.; Lanzoni, L.; Tarantino, A. M.; Viviani, M.
File in questo prodotto:
File Dimensione Formato  
Changing_the_approach.pdf

Open Access dal 20/06/2024

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri
1-s2.0-S0263822323004877-main.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 6.64 MB
Formato Adobe PDF
6.64 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1306807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact