Oligo-α-pyridylamides offer an appealing route to polyiron complexes with short Fe-Fe separations and large room temperature magnetic moments. A derivative of tris(2‐aminoethyl)amine (H6tren) containing three oligo-α-pyridylamine branches and thirteen nitrogen donors (H6L) reacts with [Fe2(Mes)4] to yield an organic nanocage built up by two tripodal ligands with interdigitated branches (HMes = mesitylene). The nanocage has crystallographic D3 symmetry but hosts a remarkably unsymmetric hexairon-oxo core, with a central Fe5(μ5-O) square pyramid, two oxygen donors bridging basal sites, and an additional Fe center residing in one of the two tren-like pockets. Bond Valence Sum (BVS) analysis, Density Functional Theory (DFT) calculations, and electrochemical data were then used to establish the protonation state of oxygen atoms and the formal oxidation states of the metals. To this purpose, a specialized set of BVS parameters was devised for Fe2+-N3- bonds with nitrogen donors of oligo-α-pyridylamides. This allowed us to formulate the compound as [Fe6O2(OH)(H3L)L], with nominally four FeII and two FeIII ions. Mössbauer spectra indicate that the compound contains two unique FeII sites, identified as a pair of closely spaced hydroxo-bridged metal ions in the central Fe5(μ5-O) pyramid, and a substantially valence-delocalized FeII2FeIII2 unit. Broken-symmetry DFT calculations predict strong ferromagnetic coupling between the two iron(II) ions, leading to a local S = 4 state that persists to room temperature and explaining the large magnetic moment measured at 300 K. The compound behaves as a single-molecule magnet, with magnetization dynamics detectable in zero static field and dominated by an Orbach-like mechanism with Ueff/kB = 49(2) K and τ0 = 4(2)·10−10 s.
A remarkably unsymmetric hexairon core embraced by two high-symmetry tripodal oligo-α-pyridylamido ligands / Nicolini, Alessio; Pankratz, Trey C.; Borsari, Marco; Clérac, Rodolphe; Ranieri, Antonio; Rouzières, Mathieu; Berry, John F.; Cornia, Andrea. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - 62:26(2023), pp. 10171-10184. [10.1021/acs.inorgchem.3c00808]
A remarkably unsymmetric hexairon core embraced by two high-symmetry tripodal oligo-α-pyridylamido ligands
Alessio Nicolini;Marco Borsari;Antonio Ranieri;Andrea Cornia
2023
Abstract
Oligo-α-pyridylamides offer an appealing route to polyiron complexes with short Fe-Fe separations and large room temperature magnetic moments. A derivative of tris(2‐aminoethyl)amine (H6tren) containing three oligo-α-pyridylamine branches and thirteen nitrogen donors (H6L) reacts with [Fe2(Mes)4] to yield an organic nanocage built up by two tripodal ligands with interdigitated branches (HMes = mesitylene). The nanocage has crystallographic D3 symmetry but hosts a remarkably unsymmetric hexairon-oxo core, with a central Fe5(μ5-O) square pyramid, two oxygen donors bridging basal sites, and an additional Fe center residing in one of the two tren-like pockets. Bond Valence Sum (BVS) analysis, Density Functional Theory (DFT) calculations, and electrochemical data were then used to establish the protonation state of oxygen atoms and the formal oxidation states of the metals. To this purpose, a specialized set of BVS parameters was devised for Fe2+-N3- bonds with nitrogen donors of oligo-α-pyridylamides. This allowed us to formulate the compound as [Fe6O2(OH)(H3L)L], with nominally four FeII and two FeIII ions. Mössbauer spectra indicate that the compound contains two unique FeII sites, identified as a pair of closely spaced hydroxo-bridged metal ions in the central Fe5(μ5-O) pyramid, and a substantially valence-delocalized FeII2FeIII2 unit. Broken-symmetry DFT calculations predict strong ferromagnetic coupling between the two iron(II) ions, leading to a local S = 4 state that persists to room temperature and explaining the large magnetic moment measured at 300 K. The compound behaves as a single-molecule magnet, with magnetization dynamics detectable in zero static field and dominated by an Orbach-like mechanism with Ueff/kB = 49(2) K and τ0 = 4(2)·10−10 s.File | Dimensione | Formato | |
---|---|---|---|
acs.inorgchem.3c00808.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
3.62 MB
Formato
Adobe PDF
|
3.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris