Nanotechnologies, such as nanoparticles (NPs) and nanomedicines (NMeds), have emerged as promising tools for the treatment and diagnosis of pathologies of the central nervous system. Features such as: a small tunable size, the ability to protect sensitive molecules, a high drug loading capacity, tunable drug release, specific targeting, and biodegradability, make them a prime choice for hard-to-treat diseases; however, these advanced technologies require in-depth optimizations from design, production, administration, and scale-up to meet the selective criteria needed to go from benchtop to bedside. The first factor to be considered when designing NPs is the core material composition, such as polymers and lipids: not only must they be biocompatible and biodegradable, but also compatible with the drug loaded. Polymers and lipids can be chemically modified to have specific properties, such as solubility, pH-sensitivity, or enzyme degradation. Another major advantage of NMeds is their ability to protect sensitive molecules from degradation. In fact, often peptides, proteins, and nucleic acids are used as therapeutic molecules against a variety of diseases, but they suffer from rapid degradation in biological environments. Here, NMeds can reduce the loss of molecules, thus increasing the therapeutic efficacy of these systems. Independent of both the matrix material and the chosen biological active molecule, a major barrier is the delivery of the NMeds to the desired site. The Blood-brain barrier's (BBB) natural protective effect makes the delivery to the brain extremely difficult. NMeds can be engineered with targeting ligands with high affinity and specificity, allowing for BBB crossing, and specific delivery to diseased cells. Once delivered to the specific diseased site, further optimized delivery systems can allow for the controlled release of the drug over time at the active site. This is necessary to increase the pharmaceutical potential of the drug by decreasing the necessary dose, allowing for less invasive treatments. The creation of these multifaceted nanotechnology systems is a daunting task. Moreover, while many of the standard protocols that are used in a research lab allow for the fine tuning of such attributes, they are often difficult to translate to larger scale production processes. In recent years, microfluidic technology has become much more mainstream and can permit the automation and adaptation of these protocols to GMP standard practices. The conversion from benchtop to microfluidic protocols, however, is still an arduous task in order to guarantee that the nano systems have a similar makeup, characteristics, and functionality when dosed. In my PhD project, my work revolved around finding solutions to the problems that can occur when designing nanotechnologies for different drugs, disease states, and applications. Peer-reviewed articles which have been accepted in competitive journals demonstrate my thesis work and the barriers overcome: synthesis and optimization of a novel PLGA-chitosan hybrid material, improving the stability of enzymes loaded in PLGA NPs, targeting the BBB and Glioblastoma by adding various targeting ligands, controlling drug release from NMeds using gel scaffolds, microfluidic scale-up, and the identification of the formation of the protein corona on different NMeds. All of these individual enhancements and optimizations will further improve the understanding of nanotechnology, and how to overcome the barriers that are currently blocking the production of marketable products to cure hard to treat diseases.
Le nanotecnologie farmaceutiche, come nanoparticelle (NPs) e nanomedicine (NMeds), sono strumenti promettenti per il trattamento e la diagnosi delle patologie del sistema nervoso centrale. Le loro caratteristiche, quali la piccola dimensione, la capacità di proteggere le molecole sensibili, un'elevata capacità di caricamento del farmaco, il rilascio controllato di farmaci, il targeting specifico, e la biodegradabilità, le rendono perfette per malattie difficili da trattare. Tuttavia, queste tecnologie avanzate richiedono ottimizzazioni approfondite a partire dalla progettazione, produzione, amministrazione e fino allo scale-up per poter passare dal laboratorio al paziente. Il primo fattore da considerare quando si progettano NPs è il materiale, come polimeri e lipidi: non solo devono essere biocompatibili e biodegradabili, ma anche compatibili con il farmaco caricato. I polimeri e i lipidi possono essere modificati chimicamente per avere proprietà specifiche, come la solubilità, la sensibilità al pH o la degradazione enzimatica. Un altro grande vantaggio delle NMeds è la loro capacità di proteggere molecole sensibili dalla degradazione. Spesso infatti peptidi, proteine e acidi nucleici sono usati come molecole terapeutiche contro una varietà di malattie, ma vengono rapidamente degradati negli ambienti biologici. Qui, le nanotecnologie possono ridurre la perdita di farmaco, aumentando così l'efficacia terapeutica. Indipendentemente sia dal materiale della matrice che dal principio attivo, una barriera importante è la consegna delle NMeds al sito desiderato. L’effetto protettivo naturale della barriera ematoencefalica (BEE) rende estremamente difficile la veicolazione di farmaci al cervello. Le NMeds possono essere funzionalizzate con ligandi con alta affinità e specificità, che permettono di attraversare la BEE e colpire solo le cellule malate. Una volta consegnato al sito specifico della malattia, NMeds ulteriormente ottimizzate possono consentire il rilascio controllato del farmaco nel tempo nel sito attivo. Ciò è necessario per aumentare il potenziale farmaceutico del farmaco diminuendo la dose necessaria e consentendo trattamenti meno invasivi. La creazione di questi sistemi nanotecnologici sfaccettati è molto complessa. Sfortunatamente, mentre molti dei protocolli standard utilizzati in un laboratorio di ricerca consentono la messa a punto di tali attributi, sono spesso difficili da tradurre in processi di produzione su larga scala. Negli ultimi anni, la tecnologia della microfluidica è diventata molto più diffusa e può consentire l'automazione e l'adattamento di questi protocolli alle pratiche standard GMP. La conversione da protocolli da banco a protocolli microfluidici, tuttavia, è ancora un compito arduo al fine di garantire che i nanosistemi abbiano una composizione, caratteristiche e funzionalità simili ai classici una volta somministrati. Nel mio progetto di dottorato, mi sono concentrata sulla ricerca di soluzioni ai problemi che possono verificarsi durante la progettazione di nanotecnologie per diversi farmaci, patologie e applicazioni. Articoli peer-reviewed che sono stati accettati in riviste indicizzate dimostrano il mio lavoro di tesi: sintesi e ottimizzazione di un nuovo materiale ibrido PLGA-chitosano, miglioramento della stabilità enzimi formulati in NPs polimeriche, targeting della BEE e di glioblastoma con ligandi mirati, controllo del rilascio di farmaci da nanomedicine tramite idrogel, scale-up microfluidico, e l'identificazione della formazione della protein corona su diversi nanosistemi. Tutti questi miglioramenti e ottimizzazioni individuali miglioreranno ulteriormente la comprensione della nanotecnologia e come superare le barriere che attualmente bloccano la produzione di prodotti commercializzabili per curare malattie difficili da trattare.
Nanotecnologie avanzate per il Sistema Nervoso Centrale: progettazione, ottimizzazione, applicazione, e scale-up / Ilaria Ottonelli , 2023 May 19. 35. ciclo, Anno Accademico 2021/2022.
Nanotecnologie avanzate per il Sistema Nervoso Centrale: progettazione, ottimizzazione, applicazione, e scale-up
OTTONELLI, ILARIA
2023
Abstract
Nanotechnologies, such as nanoparticles (NPs) and nanomedicines (NMeds), have emerged as promising tools for the treatment and diagnosis of pathologies of the central nervous system. Features such as: a small tunable size, the ability to protect sensitive molecules, a high drug loading capacity, tunable drug release, specific targeting, and biodegradability, make them a prime choice for hard-to-treat diseases; however, these advanced technologies require in-depth optimizations from design, production, administration, and scale-up to meet the selective criteria needed to go from benchtop to bedside. The first factor to be considered when designing NPs is the core material composition, such as polymers and lipids: not only must they be biocompatible and biodegradable, but also compatible with the drug loaded. Polymers and lipids can be chemically modified to have specific properties, such as solubility, pH-sensitivity, or enzyme degradation. Another major advantage of NMeds is their ability to protect sensitive molecules from degradation. In fact, often peptides, proteins, and nucleic acids are used as therapeutic molecules against a variety of diseases, but they suffer from rapid degradation in biological environments. Here, NMeds can reduce the loss of molecules, thus increasing the therapeutic efficacy of these systems. Independent of both the matrix material and the chosen biological active molecule, a major barrier is the delivery of the NMeds to the desired site. The Blood-brain barrier's (BBB) natural protective effect makes the delivery to the brain extremely difficult. NMeds can be engineered with targeting ligands with high affinity and specificity, allowing for BBB crossing, and specific delivery to diseased cells. Once delivered to the specific diseased site, further optimized delivery systems can allow for the controlled release of the drug over time at the active site. This is necessary to increase the pharmaceutical potential of the drug by decreasing the necessary dose, allowing for less invasive treatments. The creation of these multifaceted nanotechnology systems is a daunting task. Moreover, while many of the standard protocols that are used in a research lab allow for the fine tuning of such attributes, they are often difficult to translate to larger scale production processes. In recent years, microfluidic technology has become much more mainstream and can permit the automation and adaptation of these protocols to GMP standard practices. The conversion from benchtop to microfluidic protocols, however, is still an arduous task in order to guarantee that the nano systems have a similar makeup, characteristics, and functionality when dosed. In my PhD project, my work revolved around finding solutions to the problems that can occur when designing nanotechnologies for different drugs, disease states, and applications. Peer-reviewed articles which have been accepted in competitive journals demonstrate my thesis work and the barriers overcome: synthesis and optimization of a novel PLGA-chitosan hybrid material, improving the stability of enzymes loaded in PLGA NPs, targeting the BBB and Glioblastoma by adding various targeting ligands, controlling drug release from NMeds using gel scaffolds, microfluidic scale-up, and the identification of the formation of the protein corona on different NMeds. All of these individual enhancements and optimizations will further improve the understanding of nanotechnology, and how to overcome the barriers that are currently blocking the production of marketable products to cure hard to treat diseases.File | Dimensione | Formato | |
---|---|---|---|
Ottonelli Ilaria_PhD Thesis.pdf
Open access
Descrizione: Tesi definitiva
Tipologia:
Tesi di dottorato
Dimensione
181.97 MB
Formato
Adobe PDF
|
181.97 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris