Abstract Loss of protein homeostasis is associated with the accumulation of misfolded, condensed and aggregated forms of proteins, as well as with a wide range of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. Cells evolved a sophisticated protein quality control system to maintain protein homeostasis that includes molecular chaperones and degradation systems. Heat shock proteins (HSPs) are a class of molecular chaperones: they survey protein folding, prevent protein aggregation, and target damaged proteins to degradation. Several stimuli, beyond heat shock, can upregulate HSPs expression, which participate not only in the cell stress response, but exert also housekeeping functions, and may even regulate development and differentiation. Tremendous advances have been made in the last decades in understanding how HSPs are transcriptionally regulated. However, how stress signals are perceived by the cells and are integrated to activate the heat shock response is still only partly understood. Changes in the physical state and lipid composition of cell membranes can activate the expression of HSPs, through yet unclear mechanisms. HSPs, in turn, can directly interact with lipids, thereby modulating the physical state of lipid membranes. Intriguingly, changes of the lipidome can elicit protein condensation and aggregation, and dysfunction in lipid homeostasis is a known risk factor of many neurodegenerative diseases. Taken together, these data highlight the existence of a cross-talk between lipid and protein homeostasis. Based on their ability to interact both with proteins and lipids, one may envisage that HSPs represent key players acting at the crossroad between lipid and protein homeostasis. In this PhD thesis, we tackled this hypothesis using in vitro systems and cellular models. We used as a model system -synuclein, a protein whose aggregation can be triggered by interaction with small lipid unilamellar vesicles (SUVs). We investigated whether recombinant small HSPs displace -synuclein from lipids, reducing its aggregation (in collaboration with Prof. Vendruscolo, Cambridge University, UK). Our data demonstrate that, besides acting at the protein level and blocking -synuclein aggregation by direct protein-protein interactions, small HSPs can interact with lipids, interfering with both lipid and protein dynamics and aggregation. Next, we investigated whether changes in the physical state of the lipid membranes can induce the expression of HSPs. To do so, we used the aminosterol trodusquemine as a model system. Trodusquemine interacts with lipid membranes and changes their viscosity. It also prevents -synuclein lipid-induced aggregation. Using cellular systems, we could show that trodusquemine acts as a co-inducer of the heat shock response, potentiating the expression of key HSPs. These, in turn, can synergize with trodusquemine to block protein misfolding and aggregation and help restoring lipid homeostasis. In conclusion, this PhD work contributes to deciphering how cells regulate the cross-talk between lipid and protein homeostasis, and provides an example of how these processes may be pharmacologically exploited to combat protein aggregation.

Riassuno Alterazioni dell’omeostasi proteica possono portare all’accumulo di proteine aberranti ed aggregate, associate a numerose malattie neurodegenerative come la malattia di Alzheimer and la malattia di Parkinson. Per mantenere la corretta omeostasi proteica le cellule hanno sviluppato un sofisticato sistema di controllo di qualità proteica, costituito da chaperoni molecolari e sistemi di degradazione. Le proteine dello shock termico (HSPs) sono una classe di chaperoni molecolari deputata a garantire il corretto ripiegamento proteico, prevenire l’aggregazione proteica e ad indirizzare le proteine danneggiate ai sistemi di degradazione. Oltre allo shock termico, numerosi stimoli possono sovraregolare l’espressione di HSPs, che sono coivolte non solo nella risposta allo stress cellulare, ma anche in funzioni housekeeping, e posso regolare lo sviluppo ed il differenziamento. Negli ultimi decenni sono stati fatti enormi progressi nella comprensione dei meccanismi trascrizionali che regolano questi chaperoni. Tuttavia, le modalità con cui i segnali di stress vengono rilevati dalle cellule e trasdotti per attivare l’espressione di HSPs non sono del tutto conosciute. È noto che cambiamenti dello stato fisico della membrana cellulare e della sua composizione lipidica possono indurre l’attivazione di HSPs, ma i meccanismi attraverso cui ciò avviene non sono ancora chiari. A loro volta, le HSPs sono in grado di legarsi ai lipidi e modificare lo stato delle membrane lipidiche. Inoltre, modificazioni del lipidoma possono promuovere la condensazione ed aggregazione proteica; l’alterazione dell’omeostasi lipidica è nota essere un fattore di rischio per numerose malattie neurodegenerative. Le sopracitate considerazioni evidenziano l’esistenza di un cross-talk tra omeostasi lipidica e proteica. Considerando la loro capacità di legare sia le proteine che i lipidi, si può supporre che le HSPs rappresentino una componente chiave nell’interazione tra lipidi e proteine. In questo studio, abbiamo utilizzato sistemi in vitro e modelli cellulari per testare le nostre ipotesi sperimentali. E’ stata utilizzata -sinucleina come proteina modello, la cui aggregazione può essere promossa dall’interazione con piccole vescicole lipidiche unilamellari (SUVs). Abbiamo verificato se sHSPs ricombinanti potessero spiazzare -sinucleina dalle membrane lipidiche, riducendone così l’ aggregazione (in collaborazione con il Prof. Vendruscolo, Università di Cambridge, UK). Oltre ad agire a livello proteico ed a bloccare l’aggregazione di -sinucleina attraverso interazioni dirette proteina-proteina, le sHSPs possono interagire anche con i lipidi, interferendo sulle dinamiche e sulle aggregazioni sia lipidiche che proteiche. Successivamente, abbiamo verificato se cambiamenti dello stato fisico delle membrane lipidiche potessero indurre l'espressione di HSPs. Per dimostrare ciò, abbiamo utilizzato un amminosterolo, chiamato trodusquemina, come sistema modello. La trodusquemina interagisce con le membrane lipidiche e ne modifica la viscosità; inoltre, previene l’aggregazione di -sinucleina indotta dall’interazione con i lipidi. I nostri studi su modelli cellulari mostrano che trodusquemina agisce come co-induttore della risposta allo shock termico, potenziando l’espressione delle principali HSPs. Queste ultime, a loro volta, possono agire in sinergia con la trodusquemina nel bloccare l’aggregazione proteica, oltre a ripristinare l’omeostasi lipidica. In conclusione, questa tesi di dottorato contribuisce a comprendere come le cellule regolano l’interazione tra omeostasi lipidica e proteica, e fornisce un esempio di come questi processi possano essere applicati in ambito farmacologico per combattere l’aggregazione proteica.

Heat shock proteins agiscono sull'interazione tra omeostasi proteica e lipidica: Implicazioni per la malattia di Parkinson / Valentina Secco , 2023 May 30. 35. ciclo, Anno Accademico 2021/2022.

Heat shock proteins agiscono sull'interazione tra omeostasi proteica e lipidica: Implicazioni per la malattia di Parkinson

SECCO, VALENTINA
2023

Abstract

Abstract Loss of protein homeostasis is associated with the accumulation of misfolded, condensed and aggregated forms of proteins, as well as with a wide range of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. Cells evolved a sophisticated protein quality control system to maintain protein homeostasis that includes molecular chaperones and degradation systems. Heat shock proteins (HSPs) are a class of molecular chaperones: they survey protein folding, prevent protein aggregation, and target damaged proteins to degradation. Several stimuli, beyond heat shock, can upregulate HSPs expression, which participate not only in the cell stress response, but exert also housekeeping functions, and may even regulate development and differentiation. Tremendous advances have been made in the last decades in understanding how HSPs are transcriptionally regulated. However, how stress signals are perceived by the cells and are integrated to activate the heat shock response is still only partly understood. Changes in the physical state and lipid composition of cell membranes can activate the expression of HSPs, through yet unclear mechanisms. HSPs, in turn, can directly interact with lipids, thereby modulating the physical state of lipid membranes. Intriguingly, changes of the lipidome can elicit protein condensation and aggregation, and dysfunction in lipid homeostasis is a known risk factor of many neurodegenerative diseases. Taken together, these data highlight the existence of a cross-talk between lipid and protein homeostasis. Based on their ability to interact both with proteins and lipids, one may envisage that HSPs represent key players acting at the crossroad between lipid and protein homeostasis. In this PhD thesis, we tackled this hypothesis using in vitro systems and cellular models. We used as a model system -synuclein, a protein whose aggregation can be triggered by interaction with small lipid unilamellar vesicles (SUVs). We investigated whether recombinant small HSPs displace -synuclein from lipids, reducing its aggregation (in collaboration with Prof. Vendruscolo, Cambridge University, UK). Our data demonstrate that, besides acting at the protein level and blocking -synuclein aggregation by direct protein-protein interactions, small HSPs can interact with lipids, interfering with both lipid and protein dynamics and aggregation. Next, we investigated whether changes in the physical state of the lipid membranes can induce the expression of HSPs. To do so, we used the aminosterol trodusquemine as a model system. Trodusquemine interacts with lipid membranes and changes their viscosity. It also prevents -synuclein lipid-induced aggregation. Using cellular systems, we could show that trodusquemine acts as a co-inducer of the heat shock response, potentiating the expression of key HSPs. These, in turn, can synergize with trodusquemine to block protein misfolding and aggregation and help restoring lipid homeostasis. In conclusion, this PhD work contributes to deciphering how cells regulate the cross-talk between lipid and protein homeostasis, and provides an example of how these processes may be pharmacologically exploited to combat protein aggregation.
Heat shock proteins act at the crossroad between protein and lipid homeostasis: Implications for Parkinson’s disease
30-mag-2023
CARRA, Serena
VILELLA, ANTONIETTA
File in questo prodotto:
File Dimensione Formato  
Tesi definitiva_Secco Valentina.pdf

embargo fino al 29/05/2026

Descrizione: Tesi definitiva Secco Valentina
Tipologia: Tesi di dottorato
Dimensione 5.6 MB
Formato Adobe PDF
5.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1306488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact