SARS-CoV-2 infection triggers a complex immune response that can cause the onset of COVID-19, and that starts by the activation of innate immunity, the first line of defense. As previously described by our group, a hyperactivation of innate immune cells leads to a strong inflammatory status, whose persistence contributes to the immunopathogenesis of severe COVID-19. Therefore, my studies aimed at the identification of pivotal pathophysiological mechanisms that are triggered by main soluble molecules and cells belonging to innate immunity, like monocytes (MC) and neutrophils (NP), and their contribution to the heterogeneity of COVID-19. Two cohorts of patients with COVID-19 pneumonia were investigated. The first comprised 28 patients and 27 healthy donors (HD) and was used to characterize metabolism, phenotype, and functions of circulating MC. The second included 88 patients and 59 HD and was studied to dissect mechanisms underlying the neutrophilic response during SARS-CoV-2 infection. We found that MC from severe COVID-19 patients were metabolically impaired. The percentage of MC with depolarized mitochondria (mt) was increased as well as their mt mass and mt ultrastructure was profoundly altered compared to healthy MC. In COVID-19 patients dysfunctional MC expressed low levels of HLA-DR and showed a reduced capacity to perform the oxidative burst, but they were still able to produce cytokines. A relevant redistribution of MC subsets was also detected, with an expansion of intermediate MC, which have pro-inflammatory function, and a reduction of nonclassical MC. In all subsets inhibitory checkpoints PD-1 and PD-L1 were overexpressed, probably contributing to immune exhaustion. Finally, plasma concentration of several mediators involved in MC regulation and migration was higher in COVID-19 patients such as GM-CSF, suggesting the presence of emergency myelopoiesis in severe patients. In fact, immature MC were significantly increased in peripheral blood from COVID-19 patients. Regarding NP, formal evidence of their functional status in severe COVID-19 patients was missing. We found that circulating granulocytes were altered in severe COVID-19 patients, with a higher proportion of immature NP and more degranulated NP. The analysis of NP bioenergetic profile revealed a decreased spare respiratory capacity and a defective respiratory burst in NP from COVID-19 patients versus HD. However, glycolysis and glycolytic capacity were strongly increased which sustain neutrophils extracellular traps (NET) formation. Other than glycolysis, other metabolic routes have been recently associated with NP’ differentiation and function. We discovered large intracytoplasmic deposits of glycogen in NP from COVID-19 patients compared to HD and increased levels of intracellular glycogen and mRNA levels of glycogen phosphorylase L (PYGL), which catalyses glycogenolysis. Indeed, NP can use glycogen for NET formation. The analysis of cytokine and chemokine profile in patients with severe COVID-19 revealed that they are profoundly altered delineating an activation pattern which correlates with the severity of the disease of COVID-19. In conclusion, data suggested that infection with SARS-CoV-2 can heavily affect the innate compartment of immune system. MC and NP have a remodelled phenotype and metabolism that can prove effective targets for innovative therapies. The upregulation of inhibitory checkpoints on MC represents an interesting point for immunotherapy against cancer, and increased glycolysis and glycogenolysis crucial for NET formation in NP suggest possible novel strategies to control inflammatory diseases.
La complessa risposta immunitaria causata dall'infezione da SARS-CoV-2 può portare alla malattia chiamata COVID-19. L'immunità innata è la prima linea di difesa contro le infezioni e, come precedentemente descritto dal nostro gruppo, una sua eccessiva attivazione può causare uno stato infiammatorio persistente che contribuisce all'immunopatogenesi della forma grave di COVID-19. Pertanto, il mio progetto si è focalizzato sull'identificazione dei principali meccanismi fisiopatologici innescati dai componenti dell'immunità innata, tra cui molecole solubili e cellule come monociti (MC) e neutrofili (NP), che possono contribuire all'eterogeneità della malattia. Sono state studiate due coorti di pazienti con polmonite da COVID-19. La prima comprendeva 28 pazienti e 27 soggetti sani (HD) ed è stata studiata per caratterizzare il fenotipo, il metabolismo e le funzioni dei MC circolanti. La seconda coorte includeva 88 pazienti e 59 HD ed è stata studiata per individuare i meccanismi alla base della risposta neutrofilica generata durante l'infezione da SARS-CoV-2. I risultati ottenuti hanno dimostrato che i MC nei pazienti COVID-19 gravi rispetto ai HD, sono caratterizzati da una profonda alterazione metabolica. Vi è una maggiore percentuale di MC che presentano mitocondri depolarizzati e un aumento della massa mitocondriale, insieme a profonde alterazioni ultrastrutturali. I MC disfunzionali, inoltre, esprimono bassi livelli di HLA-DR e hanno una limitata capacità di fare burst ossidativo rispetto ai MC di HD, ma mantengono la capacità di produrre citochine. Inoltre, abbiamo rilevato a livello periferico, un’importante ridistribuzione delle sottopopolazioni monocitarie, con un aumento della classe intermedia pro-infiammatoria, e una riduzione di quella non classica. Tutte le sottoclassi presentano un’overespressione dei checkpoint inibitori PD-1 e PD-L1 riconducibile al fenomeno di exhaustion. Infine, la concentrazione plasmatica di alcuni fattori coinvolti nella regolazione e migrazione dei MC è maggiore nei pazienti COVID-19, come quella di GM-CSF, che associata ad un aumento significativo di MC immaturi circolanti, suggerisce la presenza di mielopoiesi di emergenza. Analizzando la seconda coorte dello studio, abbiamo dimostrato la presenza di un’alterazione funzionale e metabolica nei granulociti circolanti dei pazienti COVID-19 gravi. La percentuale di NP immaturi aumenta e i NP degranulano di più. A livello bioenergetico, i NP dei pazienti gravi rispetto ai HD hanno una ridotta capacità respiratoria di riserva e di burst ossidativo, ma un’aumentata capacità glicolitica, che sostiene la formazione delle trappole extracellulari (NET). Inoltre, abbiamo osservato la formazione di grandi depositi intracellulari di glicogeno nei neutrofili dei pazienti rispetto ai HD e un aumento dell’espressione genica dell’enzima glicogeno fosforilasi L (PYGL). La glicogenolisi, quindi, può essere utilizzata dai neutrofili come via energetica per la formazione di NET. La quantificazione dei livelli plasmatici di citochine e chemochine nei pazienti con COVID-19 grave ha rivelato la presenza di un pattern di attivazione correlabile alla gravità della malattia. In conclusione, i dati suggeriscono che l'infezione da SARS-CoV-2 può influenzare in maniera importante l’immunità innata. I diversi profili fenotipico e metabolico di MC e NP, nella malattia, possono diventare target efficaci per lo sviluppo di nuove terapie. L’overespressione dei checkpoint inibitori sui MC rappresenta un possibile bersaglio per l'immunoterapia nella lotta contro il cancro e l'aumento dell’attività glicolitica e glicogenolitica nei NP apre la strada a nuove strategie per controllare le malattie infiammatorie.
IL RUOLO DELL’IMMUNITA INNATA NEL COVID-19 GRAVE / Rebecca Borella , 2023 May 19. 35. ciclo, Anno Accademico 2021/2022.
IL RUOLO DELL’IMMUNITA INNATA NEL COVID-19 GRAVE
BORELLA, REBECCA
2023
Abstract
SARS-CoV-2 infection triggers a complex immune response that can cause the onset of COVID-19, and that starts by the activation of innate immunity, the first line of defense. As previously described by our group, a hyperactivation of innate immune cells leads to a strong inflammatory status, whose persistence contributes to the immunopathogenesis of severe COVID-19. Therefore, my studies aimed at the identification of pivotal pathophysiological mechanisms that are triggered by main soluble molecules and cells belonging to innate immunity, like monocytes (MC) and neutrophils (NP), and their contribution to the heterogeneity of COVID-19. Two cohorts of patients with COVID-19 pneumonia were investigated. The first comprised 28 patients and 27 healthy donors (HD) and was used to characterize metabolism, phenotype, and functions of circulating MC. The second included 88 patients and 59 HD and was studied to dissect mechanisms underlying the neutrophilic response during SARS-CoV-2 infection. We found that MC from severe COVID-19 patients were metabolically impaired. The percentage of MC with depolarized mitochondria (mt) was increased as well as their mt mass and mt ultrastructure was profoundly altered compared to healthy MC. In COVID-19 patients dysfunctional MC expressed low levels of HLA-DR and showed a reduced capacity to perform the oxidative burst, but they were still able to produce cytokines. A relevant redistribution of MC subsets was also detected, with an expansion of intermediate MC, which have pro-inflammatory function, and a reduction of nonclassical MC. In all subsets inhibitory checkpoints PD-1 and PD-L1 were overexpressed, probably contributing to immune exhaustion. Finally, plasma concentration of several mediators involved in MC regulation and migration was higher in COVID-19 patients such as GM-CSF, suggesting the presence of emergency myelopoiesis in severe patients. In fact, immature MC were significantly increased in peripheral blood from COVID-19 patients. Regarding NP, formal evidence of their functional status in severe COVID-19 patients was missing. We found that circulating granulocytes were altered in severe COVID-19 patients, with a higher proportion of immature NP and more degranulated NP. The analysis of NP bioenergetic profile revealed a decreased spare respiratory capacity and a defective respiratory burst in NP from COVID-19 patients versus HD. However, glycolysis and glycolytic capacity were strongly increased which sustain neutrophils extracellular traps (NET) formation. Other than glycolysis, other metabolic routes have been recently associated with NP’ differentiation and function. We discovered large intracytoplasmic deposits of glycogen in NP from COVID-19 patients compared to HD and increased levels of intracellular glycogen and mRNA levels of glycogen phosphorylase L (PYGL), which catalyses glycogenolysis. Indeed, NP can use glycogen for NET formation. The analysis of cytokine and chemokine profile in patients with severe COVID-19 revealed that they are profoundly altered delineating an activation pattern which correlates with the severity of the disease of COVID-19. In conclusion, data suggested that infection with SARS-CoV-2 can heavily affect the innate compartment of immune system. MC and NP have a remodelled phenotype and metabolism that can prove effective targets for innovative therapies. The upregulation of inhibitory checkpoints on MC represents an interesting point for immunotherapy against cancer, and increased glycolysis and glycogenolysis crucial for NET formation in NP suggest possible novel strategies to control inflammatory diseases.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_Rebecca Borella-2.pdf
embargo fino al 18/05/2026
Descrizione: Tesi definitiva Borella Rebecca
Tipologia:
Tesi di dottorato
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris