In the last decades of sports passenger cars field, aluminium alloys were selected as the most suitable material for the wheel rims manufacturing. These alloys are inherently lightweight, stiff and provide a good stylistic and design freedom. While steel wheels are now mostly adopted for commercial vehicles with a not comparable weight performance with respect to the aluminium one, magnesium alloys wheels have always struggled to break through the market for economic reasons, technological challenges and corrosion issues. This thesis deals with the adoption of composite materials in the design of wheel. The use of these materials into wheel rims development represents an innovation for the automotive market which has required a deep review of the OEM type-approval standards. Furthermore, a detailed Failure Mode and Effect Analysis (FMEA) at the very beginning of the project has been needed. The resulting composite wheel has been manufactured with two different types of cores made from randomly oriented short carbon fibres and from polyurethane foam. These cores are coupled with unidirectional and plain weave carbon fibre plies, embedded into epoxy matrix injected via Resin Transfer Moulding (RTM). Five relevant topics come up from FMEA, reflecting the weaknesses of the material for this application: the rolling on the roughness of ground, the withstanding of vertical loads while dealing with transmission of high lateral loads, the wheels fastening on vehicle, the thermal loads generated from sudden braking manoeuvres and the environmental aging. These aspects have been critically analysed and discussed by comparing the composites wheel with a forged aluminium wheel. Aluminium alloy and Carbon Fibre Reinforced Polymer (CFRP) exhibit different behaviour both under fatigue and under impact loads. First, the aluminium alloys behave as isotropic materials, whereas CFRP behave as orthotropic ones. This peculiarity of composites increases the complexity of numerical simulations performed during the design of the wheel on mimicking its failures. The wheel fastening to the suspension is crucial. The minimum tightening preload to keep the wheel in contact with the vehicle hub has been provided, and the stiffness of the bolted joint has been analysed on the loading distribution. On the thermal loads admissible by composites, a detailed analysis of the track performance of a sports vehicle has been carried out. The maximum temperature needs to be lower than the glass transition temperature of the matrix. Since higher temperatures have been collected, the composite wheel has been safeguarded by a protective plasma spray coating. Its effectiveness has been validated by experimental tests. Finally, to ensure the safety of the component during daily use, corrosion tests have been carried out to avoid aesthetic damages and the dangerous effects of stress corrosion cracking. In conclusion, the result of all these tests has brought to the development of a non-conventional wheel 28% lighter than the reference forged aluminium wheel and with similar stiffness. This design has proved that the composites and the RTM technology are ready for high-performance automotive applications.

Negli ultimi decenni nel campo delle autovetture sportive, le leghe di alluminio sono state scelte come il materiale più idoneo per la realizzazione dei cerchi ruota. Queste leghe sono intrinsecamente leggere, rigide e offrono una buona libertà stilistica e progettuale. Mentre le ruote in acciaio sono oggi perlopiù adottate per veicoli commerciali con prestazioni di peso non paragonabili a quelle in alluminio, le ruote in lega di magnesio hanno sempre faticato a conquistare il mercato per motivi economici, produttivi e per problemi di corrosione. Questa tesi si occupa dell'adozione dei materiali compositi nella progettazione delle ruote. L'uso di tali materiali nello sviluppo dei cerchi ruota rappresenta un'innovazione mondiale per il mercato automobilistico e ciò ha comportato un'importante revisione degli standard di omologazione dell’OEM. Inoltre, questa progettazione ha reso necessaria un'analisi dettagliata della Failure Mode and Effect Analysis (FMEA). La ruota in composito risultante è stata prodotta con due diversi tipi di riempitivi realizzati con fibre di carbonio corte orientate casualmente e con schiuma di poliuretano. Tali riempitivi sono accoppiati con strati di fibra di carbonio unidirezionali e incrociati, incorporati in una matrice epossidica iniettata tramite la tecnologia Resin Transfer Moulding (RTM). Dalla FMEA emergono cinque temi rilevanti che riflettono i punti deboli del materiale per questa applicazione: il rotolamento sulle asperità del terreno, la resistenza ai carichi verticali mentre si affronta la trasmissione di elevati carichi laterali, il fissaggio delle ruote al veicolo, i carichi termici generati dalle brusche frenate e l'invecchiamento ambientale. Questi aspetti sono stati analizzati e discussi confrontando la ruota in composito con una ruota in alluminio forgiato. La lega di alluminio e la fibra di carbonio rinforzata con il polimero (CFRP) mostrano un comportamento diverso quando sottoposte a carichi affaticanti e a carichi di impatto. Infatti, le leghe di alluminio si comportano come materiali isotropi, mentre i CFRP si comportano come materiali ortotropi. Questa peculiarità dei compositi aumenta la complessità delle simulazioni numeriche eseguite durante la progettazione della ruota simulandone i guasti. Il fissaggio della ruota alla sospensione è fondamentale; è stato calcolato il precarico minimo di serraggio per mantenere la ruota a contatto con il mozzo del veicolo ed è stata analizzata la rigidezza del giunto imbullonato sulla distribuzione del carico. Da un'analisi dettagliata delle prestazioni in pista di un veicolo sportivo sui carichi termici ammissibili dai compositi è emerso che la temperatura massima deve essere inferiore alla temperatura di transizione vetrosa della matrice. Poiché sono state raccolte temperature più elevate, la ruota composita è stata protetta da un rivestimento protettivo al “plasma spray”. La sua efficacia è convalidata da prove sperimentali. Infine, per garantire la sicurezza del componente durante l'uso quotidiano, sono state effettuate prove di corrosione per evitare i danni estetici e i pericolosi effetti di tenso-corrosione. In conclusione, il risultato di tutti questi test ha portato allo sviluppo di una ruota in materiale non convenzionale più leggera del 28% rispetto alla ruota di riferimento in alluminio forgiato con simile rigidezza. Questo progetto ha dimostrato che i compositi e la tecnologia RTM sono pronti per applicazioni automobilistiche ad alte prestazioni.

Sviluppo di un cerchio ruota per autovettura con materiali non convenzionali / Michele Zanchini , 2023 May 17. 35. ciclo, Anno Accademico 2021/2022.

Sviluppo di un cerchio ruota per autovettura con materiali non convenzionali

ZANCHINI, MICHELE
2023

Abstract

In the last decades of sports passenger cars field, aluminium alloys were selected as the most suitable material for the wheel rims manufacturing. These alloys are inherently lightweight, stiff and provide a good stylistic and design freedom. While steel wheels are now mostly adopted for commercial vehicles with a not comparable weight performance with respect to the aluminium one, magnesium alloys wheels have always struggled to break through the market for economic reasons, technological challenges and corrosion issues. This thesis deals with the adoption of composite materials in the design of wheel. The use of these materials into wheel rims development represents an innovation for the automotive market which has required a deep review of the OEM type-approval standards. Furthermore, a detailed Failure Mode and Effect Analysis (FMEA) at the very beginning of the project has been needed. The resulting composite wheel has been manufactured with two different types of cores made from randomly oriented short carbon fibres and from polyurethane foam. These cores are coupled with unidirectional and plain weave carbon fibre plies, embedded into epoxy matrix injected via Resin Transfer Moulding (RTM). Five relevant topics come up from FMEA, reflecting the weaknesses of the material for this application: the rolling on the roughness of ground, the withstanding of vertical loads while dealing with transmission of high lateral loads, the wheels fastening on vehicle, the thermal loads generated from sudden braking manoeuvres and the environmental aging. These aspects have been critically analysed and discussed by comparing the composites wheel with a forged aluminium wheel. Aluminium alloy and Carbon Fibre Reinforced Polymer (CFRP) exhibit different behaviour both under fatigue and under impact loads. First, the aluminium alloys behave as isotropic materials, whereas CFRP behave as orthotropic ones. This peculiarity of composites increases the complexity of numerical simulations performed during the design of the wheel on mimicking its failures. The wheel fastening to the suspension is crucial. The minimum tightening preload to keep the wheel in contact with the vehicle hub has been provided, and the stiffness of the bolted joint has been analysed on the loading distribution. On the thermal loads admissible by composites, a detailed analysis of the track performance of a sports vehicle has been carried out. The maximum temperature needs to be lower than the glass transition temperature of the matrix. Since higher temperatures have been collected, the composite wheel has been safeguarded by a protective plasma spray coating. Its effectiveness has been validated by experimental tests. Finally, to ensure the safety of the component during daily use, corrosion tests have been carried out to avoid aesthetic damages and the dangerous effects of stress corrosion cracking. In conclusion, the result of all these tests has brought to the development of a non-conventional wheel 28% lighter than the reference forged aluminium wheel and with similar stiffness. This design has proved that the composites and the RTM technology are ready for high-performance automotive applications.
Development of an automotive wheel rim with non-conventional materials
17-mag-2023
GIACOPINI, Matteo
MANTOVANI, SARA
File in questo prodotto:
File Dimensione Formato  
PhD-EF_PhD Thesis_MICHELE ZANCHINI.pdf

embargo fino al 16/05/2026

Descrizione: Tesi definitiva Zanchini Michele
Tipologia: Tesi di dottorato
Dimensione 11.97 MB
Formato Adobe PDF
11.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1305509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact