This thesis work aims to provide a new point of view in the adoption of Additive Manufacturing techniques in the design of chassis components for high-performance sports cars. The thesis is based on two pillars, the first of which being lattice structures. A lattice is a solid obtained from the ordered repetition in space of a fundamental structure, called unit cell. The mechanical properties of the lattice depend on the mechanical properties of the constituent material, the topology of the unit cell and the relative density. A campaign of numerical simulations was carried out to evaluate the linear, elastic properties of three lattice structures, two of which having a reticular unit cell, and the third being based on the Gyroid minimal surface. A numerical homogenization technique was adopted to identify the influence of the relative density on the normal and tangential modulus of elasticity, as well as on the Poisson's ratio of the three lattices. To characterize the mechanical properties in the elastoplastic field of the three structures under scrutiny, an experimental campaign was carried out including quasi-static compression tests of specimens made with these structures. The main differences in elastoplastic behaviours have been critically analysed, and a candidate unit cell has been identified for the application in automotive chassis structural components. Finally, a numerical-experimental correlation was developed to create a simplified material model, consistent with the lattice structure, to be included in non-linear simulations for passive safety. The second pillar on which this thesis is based is topology optimization. With the aid of this numerical method, it is possible to design mechanical components by reducing their mass to a minimum and at the same time maintaining certain stiffness and durability. The reduction of the mass of the chassis components leads to an increase in performance and a reduction in fuel consumption of the vehicles in which these components are equipped. In order to do so, a robust, general-purpose optimization method has been developed. With the help of topological optimization, the geometry is generated that obtains the best compromise between mass reduction and structural performance. This geometry is then used to obtain a component consisting of a thin wall that incorporates a graduated, minimal surface lattice structure. The resulting geometry is so complex that there is not any technology, other than Additive Manufacturing, that is able to produce it. The aforementioned method was first used in the conceptual design of an engine mount for a mid-rear engine sports car. Compared to the pre-existing reference support, made by casting, the optimized support maintains the same stiffness and strength, but it achieves a mass reduction of 36%. Finally, a suspension arm has been optimized for a high-performance car. The optimized control arm needed to meet some externally defined structural performance, while the aim of the optimization was to obtain a mass lower than that of a pre-existent, additively manufactured control arm. The result shows how the optimized arm has a stiffness at least 5% higher than the request, with a mass 19% lower than that of the reference arm. The results obtained from these case studies may justify, in the future, the change in production technology for these – and potentially other – chassis components, from traditional subtractive technologies to additive manufacturing.
Il presente lavoro di tesi vuole fornire un nuovo punto di vista nell’utilizzo di tecniche di Additive Manufacturing nella progettazione di componenti telaio destinati ad automobili sportive ad alte prestazioni. La tesi si basa su due pilastri. Il primo è costituito dalle strutture lattice, ovvero solidi ottenuti dalla ripetizione ordinata nello spazio di una struttura fondamentale, detta cella unitaria. Le proprietà meccaniche delle lattice dipendono dalle proprietà meccaniche del materiale costituente, dalla topologia della cella unitaria, e dalla densità relativa. Inizialmente, è stata svolta una campagna di simulazioni numeriche per valutare le proprietà meccaniche in campo elastico lineare di tre strutture lattice, due delle quali a cella unitaria reticolare, ed una a cella unitaria basata sulla superficie Giroide. È stata utilizzata una tecnica di omogeneizzazione numerica volta ad individuare la variazione dei moduli di elasticità normale e tangenziale, e del coefficiente di Poisson delle tre lattice in questione, al variare della densità relativa. Per caratterizzare le proprietà meccaniche in campo elastoplastico delle tre strutture in questione, è stata realizzata una campagna sperimentale comprendente prove di compressione quasi statica di provini realizzati con queste strutture. Le principali differenze nei comportamenti elastoplastici sono state analizzate criticamente, ed è stata individuata una cella unitaria candidata nell’applicazione in componenti strutturali per telai automobilistici. Infine, è stato sviluppata una correlazione numerico-sperimentale per realizzare un modello semplificato di materiale, coerente con la struttura lattice, da impiegare in simulazioni non lineari in ottica sicurezza passiva. Il secondo pilastro su cui questa tesi è fondata è l’ottimizzazione topologica. Con l’aiuto di questo metodo numerico è possibile progettare componenti meccanici riducendone al minimo della massa e mantenendo al contempo determinate rigidezza e durabilità. La riduzione della massa dei componenti del telaio permette di avere un vantaggio in termini prestazionali ed una riduzione dei consumi dei veicoli dotati di tali componenti. Per raggiungere questo scopo, è stato sviluppato un metodo di ottimizzazione robusto e di utilità generale. Con l’aiuto dell’ottimizzazione topologica, viene generata la geometria che ottenga il miglior compromesso tra riduzione della massa e prestazioni strutturali. Questa geometria viene poi utilizzata per ottenere un componente costituito da una parete sottile che inglobi una struttura lattice a superficie minima graduata. La complessità di una geometria così fatta è tale da renderla realizzabile esclusivamente tramite additive manufacturing. Il metodo sopracitato è stato dapprima impiegato nella realizzazione di un supporto motore per una berlinetta sportiva a motore centrale posteriore. Rispetto al supporto preesistente di riferimento, realizzato per fusione, il supporto ottimizzato mantiene uguale rigidezza e resistenza, ma ha una riduzione in massa del 36%. Infine, è stata ottimizzata una leva sospensione per un’autovettura ad elevate prestazioni. Le prestazioni strutturali richieste sono state definite esternamente, ed è stata presa come riferimento la massa di una seconda leva ottimizzata per produzione tramite additive manufacturing. Il risultato mostra come la leva ottimizzata in questo lavoro di tesi abbia una rigidezza superiore alla richiesta di almeno il 5%, con una massa inferiore del 19% rispetto al componente di riferimento. I risultati ottenuti dai casi studio sono tali da ipotizzare, in un futuro, il cambio di tecnologia produttiva per questi – e potenzialmente altri – componenti telaio, dalle tradizionali tecnologie sottrattive all’additive manufacturing.
Caratterizzazione delle proprietà meccaniche di strutture lattice ed ottimizzazione in componenti per telai automobilistici in ottica produzione tramite additive manufacturing / Mauro Giacalone , 2023 May 17. 35. ciclo, Anno Accademico 2021/2022.
Caratterizzazione delle proprietà meccaniche di strutture lattice ed ottimizzazione in componenti per telai automobilistici in ottica produzione tramite additive manufacturing
GIACALONE, MAURO
2023
Abstract
This thesis work aims to provide a new point of view in the adoption of Additive Manufacturing techniques in the design of chassis components for high-performance sports cars. The thesis is based on two pillars, the first of which being lattice structures. A lattice is a solid obtained from the ordered repetition in space of a fundamental structure, called unit cell. The mechanical properties of the lattice depend on the mechanical properties of the constituent material, the topology of the unit cell and the relative density. A campaign of numerical simulations was carried out to evaluate the linear, elastic properties of three lattice structures, two of which having a reticular unit cell, and the third being based on the Gyroid minimal surface. A numerical homogenization technique was adopted to identify the influence of the relative density on the normal and tangential modulus of elasticity, as well as on the Poisson's ratio of the three lattices. To characterize the mechanical properties in the elastoplastic field of the three structures under scrutiny, an experimental campaign was carried out including quasi-static compression tests of specimens made with these structures. The main differences in elastoplastic behaviours have been critically analysed, and a candidate unit cell has been identified for the application in automotive chassis structural components. Finally, a numerical-experimental correlation was developed to create a simplified material model, consistent with the lattice structure, to be included in non-linear simulations for passive safety. The second pillar on which this thesis is based is topology optimization. With the aid of this numerical method, it is possible to design mechanical components by reducing their mass to a minimum and at the same time maintaining certain stiffness and durability. The reduction of the mass of the chassis components leads to an increase in performance and a reduction in fuel consumption of the vehicles in which these components are equipped. In order to do so, a robust, general-purpose optimization method has been developed. With the help of topological optimization, the geometry is generated that obtains the best compromise between mass reduction and structural performance. This geometry is then used to obtain a component consisting of a thin wall that incorporates a graduated, minimal surface lattice structure. The resulting geometry is so complex that there is not any technology, other than Additive Manufacturing, that is able to produce it. The aforementioned method was first used in the conceptual design of an engine mount for a mid-rear engine sports car. Compared to the pre-existing reference support, made by casting, the optimized support maintains the same stiffness and strength, but it achieves a mass reduction of 36%. Finally, a suspension arm has been optimized for a high-performance car. The optimized control arm needed to meet some externally defined structural performance, while the aim of the optimization was to obtain a mass lower than that of a pre-existent, additively manufactured control arm. The result shows how the optimized arm has a stiffness at least 5% higher than the request, with a mass 19% lower than that of the reference arm. The results obtained from these case studies may justify, in the future, the change in production technology for these – and potentially other – chassis components, from traditional subtractive technologies to additive manufacturing.File | Dimensione | Formato | |
---|---|---|---|
Tesi Definitiva Giacalone Mauro.pdf
embargo fino al 16/05/2026
Descrizione: Tesi Definitiva Giacalone Mauro
Tipologia:
Tesi di dottorato
Dimensione
5.93 MB
Formato
Adobe PDF
|
5.93 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris