The dominant narrative in the affluent west is that climate change poses an “existential threat” and very rapid cuts in greenhouse gas (GHG) emissions and hence fossil fuel use are needed to avoid it. Transport is particularly difficult to decarbonize and current policies focusing entirely on battery electric vehicles will not and must not succeed. GHG levels are unlikely to come down significantly in the next several decades and even if they did, extreme weather events will not disappear. Combustion research, particularly of fossil fuels and in internal combustion engines (ICEs) is currently seen as unnecessary in many countries. However, it will be absolutely necessary, along with the development of the alternatives in order to ensure that energy use is improved since combustion will continue to be central to supplying global energy and driving transport for decades to come. It is commonly accepted that the rapid change from pure ICE vehicle to battery electric vehicle (BEV) can be implemented only toward the development of the concept of hybrid vehicle supplied of internal combustion engine. In the latest years pollutant regulations and fuel consumption concerns are pushing engine manufacturers towards the quest for higher thermal efficiency and specific power output for the next generation internal combustion engines. To reach these specific targets, engine manufacturers are busy every day against many challenges. Without shadow of doubt, engine knock is the main challenging aspect to be consider in the development of engine unit fuelled with gasoline. Knock occurs when conditions ahead of the flame front in an spark ignition engine result in one or more of autoignition events in the end-gas region. From a modelling standpoint, the stochastic nature of engine knock, related to combustion instability and cycle-to-cycle variability of turbulent flows, would suggest Large-Eddy Simulation (LES) as the most appropriate approach for CFD simulations. Despite this is conceptually true and several publications show the applicability of LES to both research and production units, LES still remains a very time- and CPU-demanding approach which can hardly be integrated in the industrial design process and timeframe for the development of new SI units: despite the maturity of LES models for engine flows, the widespread application to the industrial workflow is far from being possible. To limit computational costs and times, Reynolds Averaged Navier-Stokes (RANS) models are usually chosen to represent the average engine behaviour. In literature are available numerous knock models based on the concept to assign mean cell-wise reactivity without consider an intrinsic variability of the thermo-physic properties like pressure and temperature but also properties linked to the operating engine conditions like Air-to-Fuel ratio and the percentage of exhaust gas recirculation. On the other side this limitation can be partly overcome by the use of variance equations for fundamental physical variables in RANS. The information given by this kind of models is of statistical nature and it is grounded in turbulence generated variance of physical fields, which in turn affects the end-gas reaction rate towards autoignition. Such statistics-based RANS models are able to artificially reconstruct a presumed probability of knocking cycles, which can be a very useful indication to the engine designer. This manuscript has the aim to highlight the pro and cons of the abovementioned approaches, introducing before the fuel model concept, that is to say, starting from a real gasoline containing a percentage of alcohol, will be defined two different surrogates which mimic real gasoline anti-knock properties. Every surrogate will be tested and used in conjunction with the two approaches to predict knock event for the same tested engine conditions.

La narrativa dominante nell'occidente benestante è che il cambiamento climatico rappresenta una "minaccia esistenziale" e per evitarlo sono necessari tagli molto rapidi alle emissioni di gas serra (GHG) e quindi all'uso di combustibili fossili. È improbabile che i livelli di gas serra scendano in modo significativo nei prossimi decenni e anche se lo facessero, gli eventi meteorologici estremi non scompariranno. La ricerca sulla combustione, in particolare sui combustibili fossili e sui motori a combustione interna (ICE) è attualmente considerata non necessaria in molti paesi. Tuttavia, sarà assolutamente necessario, insieme allo sviluppo di alternative, al fine di garantire un migliore utilizzo dell'energia poiché la combustione continuerà a essere fondamentale per la fornitura di energia globale e la guida dei trasporti per i decenni a venire. È comunemente accettato che il rapido passaggio dal veicolo ICE puro al veicolo elettrico a batteria (BEV) possa essere attuato solo tramite lo sviluppo del concetto di veicolo ibrido dotato di motore a combustione interna. Negli ultimi anni le normative sugli inquinanti e le preoccupazioni sul consumo di carburante stanno spingendo i produttori di motori verso la ricerca di una maggiore efficienza termica e potenza specifica per i motori a combustione interna di prossima generazione. Per raggiungere questi obiettivi specifici, i produttori di motori sono impegnati ogni giorno contro molte sfide. Senza ombra di dubbio, la detonazione del motore è il principale aspetto sfidante da considerare nello sviluppo di un'unità motore alimentata a benzina. La detonazione si verifica quando le condizioni davanti al fronte di fiamma in un motore ad accensione comandata danno luogo ad una serie di fenomeni di autoaccensione per via di condizioni di pressione e temperature critiche raggiunte nella zona dei gas non combusti. Da un punto di vista della modellizzazione, la natura stocastica della detonazione del motore, correlata all'instabilità della combustione e alla variabilità da ciclo a ciclo dei flussi turbolenti, suggerirebbe la simulazione Large-Eddy (LES) come l'approccio più appropriato per le simulazioni CFD. Nonostante ciò sia concettualmente vero e diverse pubblicazioni mostrino l'applicabilità di LES sia ai motori da ricerca che a quelli di produzione, la LES rimane ancora un approccio che richiede molto tempo e CPU che difficilmente può essere integrato nel processo di progettazione industriale e tempi per lo sviluppo di nuove unità: nonostante la maturità dei modelli LES per applicazioni motoristiche, l'applicazione diffusa al flusso di lavoro industriale è tutt'altro che possibile. Per limitare i costi e i tempi di calcolo, i modelli Reynolds Averaged Navier-Stokes (RANS) vengono solitamente scelti per rappresentare il comportamento medio del motore. In letteratura sono disponibili numerosi modelli di knock basati sul concetto di assegnare la reattività media cellulare senza considerare una variabilità intrinseca delle proprietà termofisiche come pressione e temperatura ma anche proprietà legate alle condizioni di funzionamento del motore come il rapporto Aria-Combustibile e la percentuale di ricircolo dei gas di scarico. D'altra parte, questa limitazione può essere in parte superata dall'uso di equazioni di varianza per variabili fisiche fondamentali per l’approccio RANS. Le informazioni fornite da questo tipo di modelli sono di natura statistica e si basano sulla varianza generata dalla turbolenza dei campi fisici, che a sua volta influisce sulla velocità di reazione del gas finale verso l'autoaccensione. Tali modelli RANS basati su statistiche sono in grado di ricostruire artificialmente una presunta probabilità di cicli di battito, che può essere un'indicazione molto utile per il progettista del motore

Validazione di una metodologia basata sulla cinetica chimica per la deduzione della detonazione nei motori GDI. Modellazione del combustibile e confronto fra approccio sintetico e statistico / Francesco Cicci , 2023 May 17. 35. ciclo, Anno Accademico 2021/2022.

Validazione di una metodologia basata sulla cinetica chimica per la deduzione della detonazione nei motori GDI. Modellazione del combustibile e confronto fra approccio sintetico e statistico

CICCI, FRANCESCO
2023

Abstract

The dominant narrative in the affluent west is that climate change poses an “existential threat” and very rapid cuts in greenhouse gas (GHG) emissions and hence fossil fuel use are needed to avoid it. Transport is particularly difficult to decarbonize and current policies focusing entirely on battery electric vehicles will not and must not succeed. GHG levels are unlikely to come down significantly in the next several decades and even if they did, extreme weather events will not disappear. Combustion research, particularly of fossil fuels and in internal combustion engines (ICEs) is currently seen as unnecessary in many countries. However, it will be absolutely necessary, along with the development of the alternatives in order to ensure that energy use is improved since combustion will continue to be central to supplying global energy and driving transport for decades to come. It is commonly accepted that the rapid change from pure ICE vehicle to battery electric vehicle (BEV) can be implemented only toward the development of the concept of hybrid vehicle supplied of internal combustion engine. In the latest years pollutant regulations and fuel consumption concerns are pushing engine manufacturers towards the quest for higher thermal efficiency and specific power output for the next generation internal combustion engines. To reach these specific targets, engine manufacturers are busy every day against many challenges. Without shadow of doubt, engine knock is the main challenging aspect to be consider in the development of engine unit fuelled with gasoline. Knock occurs when conditions ahead of the flame front in an spark ignition engine result in one or more of autoignition events in the end-gas region. From a modelling standpoint, the stochastic nature of engine knock, related to combustion instability and cycle-to-cycle variability of turbulent flows, would suggest Large-Eddy Simulation (LES) as the most appropriate approach for CFD simulations. Despite this is conceptually true and several publications show the applicability of LES to both research and production units, LES still remains a very time- and CPU-demanding approach which can hardly be integrated in the industrial design process and timeframe for the development of new SI units: despite the maturity of LES models for engine flows, the widespread application to the industrial workflow is far from being possible. To limit computational costs and times, Reynolds Averaged Navier-Stokes (RANS) models are usually chosen to represent the average engine behaviour. In literature are available numerous knock models based on the concept to assign mean cell-wise reactivity without consider an intrinsic variability of the thermo-physic properties like pressure and temperature but also properties linked to the operating engine conditions like Air-to-Fuel ratio and the percentage of exhaust gas recirculation. On the other side this limitation can be partly overcome by the use of variance equations for fundamental physical variables in RANS. The information given by this kind of models is of statistical nature and it is grounded in turbulence generated variance of physical fields, which in turn affects the end-gas reaction rate towards autoignition. Such statistics-based RANS models are able to artificially reconstruct a presumed probability of knocking cycles, which can be a very useful indication to the engine designer. This manuscript has the aim to highlight the pro and cons of the abovementioned approaches, introducing before the fuel model concept, that is to say, starting from a real gasoline containing a percentage of alcohol, will be defined two different surrogates which mimic real gasoline anti-knock properties. Every surrogate will be tested and used in conjunction with the two approaches to predict knock event for the same tested engine conditions.
Validation of chemistry-based methodologies to infer knock occurrence in a GDI engine. Fuel model design and comparison between synthetic and statistical approaches
17-mag-2023
D'ADAMO, Alessandro
FONTANESI, Stefano
File in questo prodotto:
File Dimensione Formato  
FRANCESCO-CICCI-Validation of chemistry-based methodologies to infer knock occurrence in a GDI engine.pdf

embargo fino al 16/05/2026

Descrizione: Tesi definitiva-CICCI FRANCESCO-Validation of chemistry-based methodologies to infer knock occurrence in a GDI engine. Fuel model design and comparison between synthetic and statistical approaches
Tipologia: Tesi di dottorato
Dimensione 4.63 MB
Formato Adobe PDF
4.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1305488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact