In this paper, we propose a new deep learning approach based on unfolded neural networks for the reconstruction of X-ray computed tomography images from few views. We start from a model-based approach in a compressed sensing framework, described by the minimization of a least squares function plus an edge-preserving prior on the solution. In particular, the proposed network automatically estimates the internal parameters of a proximal interior point method for the solution of the optimization problem. The numerical tests performed on both a synthetic and a real dataset show the effectiveness of the framework in terms of accuracy and robustness with respect to noise on the input sinogram when compared to other different data-driven approaches.

CTprintNet: An Accurate and Stable Deep Unfolding Approach for Few-View CT Reconstruction / LOLI PICCOLOMINI, Elena; Prato, Marco; Scipione, Margherita; Sebastiani, Andrea. - In: ALGORITHMS. - ISSN 1999-4893. - 16:6(2023), pp. 1-18. [10.3390/a16060270]

CTprintNet: An Accurate and Stable Deep Unfolding Approach for Few-View CT Reconstruction

Elena Loli Piccolomini;Marco Prato
;
Margherita Scipione;
2023

Abstract

In this paper, we propose a new deep learning approach based on unfolded neural networks for the reconstruction of X-ray computed tomography images from few views. We start from a model-based approach in a compressed sensing framework, described by the minimization of a least squares function plus an edge-preserving prior on the solution. In particular, the proposed network automatically estimates the internal parameters of a proximal interior point method for the solution of the optimization problem. The numerical tests performed on both a synthetic and a real dataset show the effectiveness of the framework in terms of accuracy and robustness with respect to noise on the input sinogram when compared to other different data-driven approaches.
2023
16
6
1
18
CTprintNet: An Accurate and Stable Deep Unfolding Approach for Few-View CT Reconstruction / LOLI PICCOLOMINI, Elena; Prato, Marco; Scipione, Margherita; Sebastiani, Andrea. - In: ALGORITHMS. - ISSN 1999-4893. - 16:6(2023), pp. 1-18. [10.3390/a16060270]
LOLI PICCOLOMINI, Elena; Prato, Marco; Scipione, Margherita; Sebastiani, Andrea
File in questo prodotto:
File Dimensione Formato  
algorithms-16-00270-v2.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 3.63 MB
Formato Adobe PDF
3.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1305406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact