Graph manifolds are compact orientable 3--manifolds obtained by gluing several copies of $D^2 \times \mathbb S^1$ and $N^2 \times \mathbb S^1$ together by homeomorphisms of some components of their boundaries ($D^2$ is the 2--disc and $N^2$ denotes the 2--disc with two holes). Here we study spines and surgery representations of orientable graph manifolds, and derive geometric presentations of their fundamental group. Then we determine the homeomorphism type of many Takahashi manifolds and the Teragaito manifolds, showing that they are graph manifolds with specified invariants. Finally, we describe graph manifolds arising from toroidal surgeries on certain classes of hyperbolic knots.

Spines and surgery descriptions of graph manifolds / Cavicchioli, Alberto; Spaggiari, Fulvia. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - 339:(2023), pp. 1-19. [10.1016/j.topol.2023.108579]

Spines and surgery descriptions of graph manifolds

Cavicchioli, Alberto
;
Spaggiari, Fulvia
2023

Abstract

Graph manifolds are compact orientable 3--manifolds obtained by gluing several copies of $D^2 \times \mathbb S^1$ and $N^2 \times \mathbb S^1$ together by homeomorphisms of some components of their boundaries ($D^2$ is the 2--disc and $N^2$ denotes the 2--disc with two holes). Here we study spines and surgery representations of orientable graph manifolds, and derive geometric presentations of their fundamental group. Then we determine the homeomorphism type of many Takahashi manifolds and the Teragaito manifolds, showing that they are graph manifolds with specified invariants. Finally, we describe graph manifolds arising from toroidal surgeries on certain classes of hyperbolic knots.
2023
339
1
19
Spines and surgery descriptions of graph manifolds / Cavicchioli, Alberto; Spaggiari, Fulvia. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - 339:(2023), pp. 1-19. [10.1016/j.topol.2023.108579]
Cavicchioli, Alberto; Spaggiari, Fulvia
File in questo prodotto:
File Dimensione Formato  
GraphMfolds (1).pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 387.62 kB
Formato Adobe PDF
387.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1304646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact