We introduce a new numerical time integration scheme, in the framework of associative von-Mises plasticity with linear kinematic and isotropic hardening. The new procedure is based on the model reformulation in terms of an augmented stress tensor and on the adoption of an integration factor; the integration of the model makes use of exponential maps. A consistent number of numerical tests enlighten the superior behaviour of the new exponential-based technique, by means of comparison with classical return map algorithms based either on backward Euler or generalized midpoint integration rules.

A new integration algorithm for the von-Mises elasto-plastic model / Artioli, E; Auricchio, F; Beirão da Veiga, L. - 61:(2012), pp. 223-258. [10.1007/978-3-642-24638-8_15]

A new integration algorithm for the von-Mises elasto-plastic model

Artioli E;
2012

Abstract

We introduce a new numerical time integration scheme, in the framework of associative von-Mises plasticity with linear kinematic and isotropic hardening. The new procedure is based on the model reformulation in terms of an augmented stress tensor and on the adoption of an integration factor; the integration of the model makes use of exponential maps. A consistent number of numerical tests enlighten the superior behaviour of the new exponential-based technique, by means of comparison with classical return map algorithms based either on backward Euler or generalized midpoint integration rules.
2012
Mechanics, Models and Methods in Civil Engineering
Frémond Michel; Maceri Franco
978-3-642-24638-8
Springer
A new integration algorithm for the von-Mises elasto-plastic model / Artioli, E; Auricchio, F; Beirão da Veiga, L. - 61:(2012), pp. 223-258. [10.1007/978-3-642-24638-8_15]
Artioli, E; Auricchio, F; Beirão da Veiga, L
File in questo prodotto:
File Dimensione Formato  
EDO_Springer.pdf

Accesso riservato

Dimensione 694.96 kB
Formato Adobe PDF
694.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1303409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact