The asymptotic behaviour of the smallest eigenvalue in linear Koiter shell problems is studied, as the thickness parameter tends to zero. In particular, three types of shells of revolution are considered. A result concerning the ratio between the bending and the total elastic energy is also provided, by using the general theory detailed in [L. Beir˜ao da Veiga, C. Lovadina, An interpolation theory approach to Shell eigenvalue problems (submitted for publication); L. Beir˜ao da Veiga, C. Lovadina, Asymptotics of shell eigenvalue problems, C.R. Acad. Sci. Paris 9 (2006) 707–710].

Free vibrations for some Koiter shells of revolution / Artioli, E; Beirão da Veiga, L; Hakula, H; Lovadina, C. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - 21:12(2008), pp. 1245-1248. [10.1016/j.aml.2007.10.030]

Free vibrations for some Koiter shells of revolution

Artioli E;
2008

Abstract

The asymptotic behaviour of the smallest eigenvalue in linear Koiter shell problems is studied, as the thickness parameter tends to zero. In particular, three types of shells of revolution are considered. A result concerning the ratio between the bending and the total elastic energy is also provided, by using the general theory detailed in [L. Beir˜ao da Veiga, C. Lovadina, An interpolation theory approach to Shell eigenvalue problems (submitted for publication); L. Beir˜ao da Veiga, C. Lovadina, Asymptotics of shell eigenvalue problems, C.R. Acad. Sci. Paris 9 (2006) 707–710].
2008
21
12
1245
1248
Free vibrations for some Koiter shells of revolution / Artioli, E; Beirão da Veiga, L; Hakula, H; Lovadina, C. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - 21:12(2008), pp. 1245-1248. [10.1016/j.aml.2007.10.030]
Artioli, E; Beirão da Veiga, L; Hakula, H; Lovadina, C
File in questo prodotto:
File Dimensione Formato  
ABHL_AML_2008.pdf

Accesso riservato

Dimensione 334.82 kB
Formato Adobe PDF
334.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1303384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact