In this communication we propose a new exponential-based integration algorithm for associative von-Mises plasticity with linear isotropic and kinematic hardening, which follows the ones presented by the authors in previous papers. In the first part of the work we develop a theoretical analysis on the numerical properties of the developed exponential-based schemes and, in particular, we address the yield consistency, exactness under proportional loading, accuracy and stability of the methods. In the second part of the contribution, we show a detailed numerical comparison between the new exponential-based method and two classical radial return map methods, based on backward Euler and midpoint integration rules, respectively. The developed tests include pointwise stress-strain loading histories, iso-error maps and global boundary value problems. The theoretical and numerical results reveal the optimal properties of the proposed scheme.

A novel 'optimal' exponential-based integration algorithm for von-Mises plasticity with linear hardening: Theoretical analysis on yield consistency, accuracy, convergence and numerical investigations / Artioli, E; Auricchio, F; Beirão da Veiga, L. - In: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. - ISSN 0029-5981. - 67:4(2006), pp. 449-498. [10.1002/nme.1637]

A novel 'optimal' exponential-based integration algorithm for von-Mises plasticity with linear hardening: Theoretical analysis on yield consistency, accuracy, convergence and numerical investigations

Artioli E;
2006

Abstract

In this communication we propose a new exponential-based integration algorithm for associative von-Mises plasticity with linear isotropic and kinematic hardening, which follows the ones presented by the authors in previous papers. In the first part of the work we develop a theoretical analysis on the numerical properties of the developed exponential-based schemes and, in particular, we address the yield consistency, exactness under proportional loading, accuracy and stability of the methods. In the second part of the contribution, we show a detailed numerical comparison between the new exponential-based method and two classical radial return map methods, based on backward Euler and midpoint integration rules, respectively. The developed tests include pointwise stress-strain loading histories, iso-error maps and global boundary value problems. The theoretical and numerical results reveal the optimal properties of the proposed scheme.
2006
67
4
449
498
A novel 'optimal' exponential-based integration algorithm for von-Mises plasticity with linear hardening: Theoretical analysis on yield consistency, accuracy, convergence and numerical investigations / Artioli, E; Auricchio, F; Beirão da Veiga, L. - In: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. - ISSN 0029-5981. - 67:4(2006), pp. 449-498. [10.1002/nme.1637]
Artioli, E; Auricchio, F; Beirão da Veiga, L
File in questo prodotto:
File Dimensione Formato  
esc2.pdf

Accesso riservato

Dimensione 804.38 kB
Formato Adobe PDF
804.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1303381
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact