Wheat represents one of the most important staple food crops worldwide and its genetic improvement is fundamental to meeting the global demand of the growing population. However, the environmental stresses, worsened by climate change, and the increasing deterioration of arable land make it very difficult to fulfil this demand. In light of this, the tolerance of wheat to abiotic stresses has become a key objective of genetic improvement, as an effective strategy to ensure high yields without increasing the cultivated land. Genetic erosion related to modern agriculture, whereby elite, high-yielding wheat varieties are the product of high selection pressure, has reduced the overall genetic diversity, including the allelic diversity of genes that could be advantageous for adaptation to adverse environmental conditions. This makes traditional breeding a less effective or slower approach to generating new stress-tolerant wheat varieties. Either mining for the diversity of not-adapted large germplasm pools, or generating new diversity, are the mainstream approaches to be pursued. The advent of genetic engineering has opened the possibility to create new plant variability and its application has provided a strong complement to traditional breeding. Genetic engineering strategies such as transgenesis and genome editing have then provided the opportunity to improve environmental tolerance traits of agronomic importance in cultivated species. As for wheat, several laboratories worldwide have successfully produced transgenic wheat lines with enhanced tolerance to abiotic stresses, and, more recently, significant improvements in the CRISPR/Cas9 tools available for targeted variations within the wheat genome have been achieved. In light of this, the present review aims to provide successful examples of genetic engineering applications for the improvement of wheat adaptation to drought, salinity and extreme temperatures, which represent the most frequent and most severe events causing the greatest losses in wheat production worldwide.

Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview / Trono, Daniela; Pecchioni, Nicola. - In: PLANTS. - ISSN 2223-7747. - 11:23(2022), pp. 3358-35 pages. [10.3390/plants11233358]

Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview

Pecchioni, Nicola
2022

Abstract

Wheat represents one of the most important staple food crops worldwide and its genetic improvement is fundamental to meeting the global demand of the growing population. However, the environmental stresses, worsened by climate change, and the increasing deterioration of arable land make it very difficult to fulfil this demand. In light of this, the tolerance of wheat to abiotic stresses has become a key objective of genetic improvement, as an effective strategy to ensure high yields without increasing the cultivated land. Genetic erosion related to modern agriculture, whereby elite, high-yielding wheat varieties are the product of high selection pressure, has reduced the overall genetic diversity, including the allelic diversity of genes that could be advantageous for adaptation to adverse environmental conditions. This makes traditional breeding a less effective or slower approach to generating new stress-tolerant wheat varieties. Either mining for the diversity of not-adapted large germplasm pools, or generating new diversity, are the mainstream approaches to be pursued. The advent of genetic engineering has opened the possibility to create new plant variability and its application has provided a strong complement to traditional breeding. Genetic engineering strategies such as transgenesis and genome editing have then provided the opportunity to improve environmental tolerance traits of agronomic importance in cultivated species. As for wheat, several laboratories worldwide have successfully produced transgenic wheat lines with enhanced tolerance to abiotic stresses, and, more recently, significant improvements in the CRISPR/Cas9 tools available for targeted variations within the wheat genome have been achieved. In light of this, the present review aims to provide successful examples of genetic engineering applications for the improvement of wheat adaptation to drought, salinity and extreme temperatures, which represent the most frequent and most severe events causing the greatest losses in wheat production worldwide.
2022
11
23
3358
35 pages
Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview / Trono, Daniela; Pecchioni, Nicola. - In: PLANTS. - ISSN 2223-7747. - 11:23(2022), pp. 3358-35 pages. [10.3390/plants11233358]
Trono, Daniela; Pecchioni, Nicola
File in questo prodotto:
File Dimensione Formato  
209_Trono e Pecchioni Plants 2022.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1302089
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact