The research activity focused on the development of the conceptual design of an innovative system able to remove the CTCs (Circulating Tumor Cells) from the human blood flow. The activity was part of the CLEAR project, the CTC targeted Liquid surgEry AppaRatus, aimed at creating a medical device capable of removing CTCs from the peripheral blood of a cancer patient. The objective of this thesis was the preliminary analysis of the physical phenomena underlying the functioning of the concept and the conception of a possible prototype of such a device that can be applied in the diagnostic and clinical field. On the one hand, this research was characterized by a study of the biophysical and electrophysiological properties of CTCs as a function of their relationship with an electric field, which serves as the basic operating principle of the device. On the other hand, this work focused on the validation of an innovative calculation methodology based on the use of fluid dynamics computational analysis (CFD). This methodology was applied to the study of the motion and fluid interaction of particles suspended within the blood in the presence of electrical sources. The research activity included a bibliographic analysis focused on the electrophysiology studies; therefore, a parallelism was identified between a capacitor and a biological cell, by virtue of its electrical membrane characteristics. Then, the cell can be considered as an electric capacitor and the equivalent capacitor model system can be used to represent different types of cells normally present in the blood as well as various types of CTCs. This approach allowed the biological characteristics of the cells to be transformed into digital twin information useful for engineering applications. By modelling CTCs and blood cells through this electro-physiological parallelism, the surface electric charge of each cell was theoretically calculated. This parameter allowed the circulating cancer cells to be discriminated and this characteristic was used to study their interaction with an electric field. Subsequently, an experimental campaign for the qualification of the electric charge of cancer cells was carried out together with the IRCCS-IRST of Meldola and in collaboration with the University of Bologna, the University of Modena and Reggio Emilia, and finally with the University of Twente. In this context, both breast (MCF-7) and prostate (LNCaP) cancer cells were analyzed using the Patch Clamp technique. The analysis of the obtained results was used to validate the theoretical approach. In parallel, the research activity included the numerical analysis of the CTCs behavior in the blood flow through CFD analysis, to understand how cancer cells circulate within the blood flow, as a function of their electrical charge. Then, a CFD design of a conceptual device for CTCs entrapment was developed, capable of predicting the behavior of CTCs when interacting with an electric field. The analysis highlighted the influence of the duct shape factor, as well as the intensity of the electric field on the motion characteristics of CTCs within the blood flow. These results provided the guidelines for the design of the active filtration system in liquid surgery apparatus for extra corporeal flow conditions. The results achieved with both the numerical analysis and the experimental activities made it possible to design a preliminary version of the mechatronic device and build a first prototype of the CLEAR system, that can be used in the future. In conclusion, it was possible to analyze the conceptual design and define a first prototype of the filtering system for CTCs and to evaluate the efficiency of the device and to support the possible clinical outcome that this innovative approach could bring.

L'attività di ricerca si è concentrata sullo sviluppo e sulla progettazione concettuale di un sistema innovativo in grado di rimuovere le CTC (Cellule Tumorali Circolanti) dal flusso sanguigno. L'attività ha fatto parte del progetto CLEAR, the CTC targeted Liquid surgEry AppaRatus, volto a creare un dispositivo medico in grado di rimuovere le CTC dal sangue periferico di un paziente oncologico. L'obiettivo della tesi è stato quello di condurre un’ analisi preliminare dei fenomeni fisici alla base della progettazione concettuale del dispositivo, con la conseguente realizzazione di un possibile prototipo, applicabile in campo diagnostico e clinico. Da un lato, questa ricerca è stata caratterizzata da uno studio delle proprietà biofisiche ed elettrofisiologiche delle CTC in funzione della loro relazione con un campo elettrico, che funge da principio operativo di base del dispositivo. Dall'altro lato, il lavoro si è concentrato sulla validazione di una metodologia di calcolo innovativa basata sull'uso dell'analisi fluidodinamica computazionale (CFD). La metodologia è stata applicata allo studio del moto e dell’interazione fluida delle particelle sospese nel sangue in presenza di sorgenti elettriche. Inizialmente l'attività di ricerca è stata interessata da un'approfondita analisi bibliografica, focalizzata sul campo dell’ elettrofisiologia; in particolare, è stato identificato un parallelismo tra un condensatore e una cellula biologica, in virtù delle sue caratteristiche di membrana elettrica. La cellula può quindi essere considerata come un condensatore elettrico e il modello di condensatore equivalente può essere utilizzato per rappresentare diversi tipi di cellule normalmente presenti nel sangue, così come vari tipi di CTC. Questo approccio ha permesso che le caratteristiche biologiche delle cellule fossero trasformate in “informazioni digitali”. Modellando le CTC e le cellule del sangue attraverso il parallelismo elettrofisiologico, è stata calcolata teoricamente la carica elettrica superficiale di ogni cellula. Tale parametro ha permesso di discriminare le cellule tumorali da quelle normalmente presenti nel flusso sanguigno, e di studiare la loro interazione con un campo elettrico. È stata poi condotta una campagna sperimentale per la qualificazione della carica elettrica delle cellule tumorali in collaborazione con l'IRCCS-IRST di Meldola, con l'Università di Bologna, l'Università di Modena e Reggio Emilia, e infine con l'Università di Twente. In questo contesto, sono state analizzate tramite la tecnica del Patch Clamp cellule del cancro al seno (MCF-7) e cellule del cancro alla prostata (LNCaP). In parallelo, l'attività di ricerca ha incluso l'analisi numerica CFD del comportamento delle CTC nel flusso sanguigno, per capire come le cellule tumorali circolino all'interno del sangue in funzione della loro carica elettrica. In seguito, è stata condotta un’analisi CFD di un dispositivo concettuale per l'intrappolamento delle CTC, in grado di prevedere il comportamento di tali cellule quando interagiscono con un campo elettrico. L'analisi ha evidenziato l'influenza del fattore di forma del condotto e l'intensità del campo elettrico sulle caratteristiche di movimento delle CTC nel sangue. I risultati ottenuti con l'analisi numerica e le attività sperimentali hanno permesso di progettare una versione preliminare del dispositivo meccatronico e di costruire un primo prototipo del sistema CLEAR, utilizzabile nel prossimo futuro. In conclusione, è stato possibile condurre la progettazione concettuale e la definizione di un primo prototipo del sistema di filtraggio per le CTC, valutando l'efficienza del dispositivo e supportando il possibile risultato clinico che questo approccio innovativo potrebbe portare.

Progettazione concettuale di un dispositivo meccatronico per la rimozione delle CTC (cellule tumorali circolanti) / Letizia Scurani , 2023 Mar 23. 35. ciclo, Anno Accademico 2021/2022.

Progettazione concettuale di un dispositivo meccatronico per la rimozione delle CTC (cellule tumorali circolanti)

SCURANI, LETIZIA
2023

Abstract

The research activity focused on the development of the conceptual design of an innovative system able to remove the CTCs (Circulating Tumor Cells) from the human blood flow. The activity was part of the CLEAR project, the CTC targeted Liquid surgEry AppaRatus, aimed at creating a medical device capable of removing CTCs from the peripheral blood of a cancer patient. The objective of this thesis was the preliminary analysis of the physical phenomena underlying the functioning of the concept and the conception of a possible prototype of such a device that can be applied in the diagnostic and clinical field. On the one hand, this research was characterized by a study of the biophysical and electrophysiological properties of CTCs as a function of their relationship with an electric field, which serves as the basic operating principle of the device. On the other hand, this work focused on the validation of an innovative calculation methodology based on the use of fluid dynamics computational analysis (CFD). This methodology was applied to the study of the motion and fluid interaction of particles suspended within the blood in the presence of electrical sources. The research activity included a bibliographic analysis focused on the electrophysiology studies; therefore, a parallelism was identified between a capacitor and a biological cell, by virtue of its electrical membrane characteristics. Then, the cell can be considered as an electric capacitor and the equivalent capacitor model system can be used to represent different types of cells normally present in the blood as well as various types of CTCs. This approach allowed the biological characteristics of the cells to be transformed into digital twin information useful for engineering applications. By modelling CTCs and blood cells through this electro-physiological parallelism, the surface electric charge of each cell was theoretically calculated. This parameter allowed the circulating cancer cells to be discriminated and this characteristic was used to study their interaction with an electric field. Subsequently, an experimental campaign for the qualification of the electric charge of cancer cells was carried out together with the IRCCS-IRST of Meldola and in collaboration with the University of Bologna, the University of Modena and Reggio Emilia, and finally with the University of Twente. In this context, both breast (MCF-7) and prostate (LNCaP) cancer cells were analyzed using the Patch Clamp technique. The analysis of the obtained results was used to validate the theoretical approach. In parallel, the research activity included the numerical analysis of the CTCs behavior in the blood flow through CFD analysis, to understand how cancer cells circulate within the blood flow, as a function of their electrical charge. Then, a CFD design of a conceptual device for CTCs entrapment was developed, capable of predicting the behavior of CTCs when interacting with an electric field. The analysis highlighted the influence of the duct shape factor, as well as the intensity of the electric field on the motion characteristics of CTCs within the blood flow. These results provided the guidelines for the design of the active filtration system in liquid surgery apparatus for extra corporeal flow conditions. The results achieved with both the numerical analysis and the experimental activities made it possible to design a preliminary version of the mechatronic device and build a first prototype of the CLEAR system, that can be used in the future. In conclusion, it was possible to analyze the conceptual design and define a first prototype of the filtering system for CTCs and to evaluate the efficiency of the device and to support the possible clinical outcome that this innovative approach could bring.
Conceptual design of a mechatronic device for CTCs (Circulating Tumor Cells) removal
23-mar-2023
MILANI, Massimo
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_LetiziaScurani.pdf

embargo fino al 22/03/2026

Descrizione: Tesi definitiva Scurani Letizia
Tipologia: Tesi di dottorato
Dimensione 4.19 MB
Formato Adobe PDF
4.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1300913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact