The objective of this Thesis is the development of three-dimensional numerical methodologies for the performance prediction of hydrostatic pumps and motors to further investigate the effects of the internal fluid dynamics on the volumetric efficiency of the real machines. These tools will hopefully become an integral part of the industrial process, not only supporting the design of more robust components but also significantly contributing to the current challenge of reducing consumptions. In details, the research focused on the CFD analysis of the most used pump architectures in hydraulics: the piston pumps, whose variable displacement characteristic normally leads to a significant reduction of the power losses associated with the hydraulic system, and the gear pumps, much simpler than the others but for this reason more robust and compact, without losing of precision. At first, the simulation of both machines was performed, including all the characteristic dynamics and the coupling clearances, which mainly affect the volumetric flow losses of the pumps. The simplified "constant gap" hypothesis was considered for these models due to the already high computational load, with remarkable effects on the final simulation time. Advanced modelling techniques have been adopted to accurately reproduce the motions of the internal parts and the Overset Mesh approach was exploited to address the variable orientation and shape of the corresponding fluid regions. The numerical models allowed predicting the operation of both units with sufficient accuracy and the effects of biodegradable oils on the efficiency of an external gear pump were observed with respect to a common mineral oil. Subsequently, a new CFD methodology was implemented to evaluate the micro-dynamics of the single components of the pump in response to the external forces and moments produced by the interaction with the other parts and with the operating fluid. In this work, a Dynamic Fluid Body Interaction (DFBI) approach was adopted to investigate the slipper-swash plate coupling under different operating conditions of the axial piston pump. The simulations were able to highlight the mutual interaction between the pressure distribution inside the gap and the motion of the slipper, thus allowing to predict the hydrodynamic lift and the possible contact between parts. Moreover, the results were discussed for two slipper designs, namely the single land slipper and the vented grooved slipper, and different behaviours in terms of both dynamics and flow losses were obtained. Despite being developed on a specific interface, the proposed numerical model relies on common features of the many hydrodynamic couplings within pumps and motors. Therefore, it may represent an important tool for the analysis of any lubricating interface. Finally, as a conclusion of this Thesis, the future of fluid dynamics simulation was discussed by comparing the reliable CFD approach with the SPH (‘Smoothed-Particle Hydrodynamics’) code, a new methodology for the analysis of complex multiphase flows with reduced effort and lower computational times with respect to traditional methods, thus receiving more and more interest over the last few years among researchers. In details, a comparison between numerical and experimental results was performed by means of a specific mock-up for off-highway vehicles transmissions to outline the pros and the cons of both algorithms in simulating multiphase flows.
Oggetto del presente lavoro di Tesi è lo sviluppo di metodologie numeriche tridimensionali per l’analisi delle prestazioni di pompe e motori idrostatici al fine di approfondire gli effetti dei fenomeni fluidodinamici interni sul rendimento volumetrico delle macchine reali. Tali strumenti potranno auspicabilmente diventare parte integrante del processo industriale, non solo favorendo la progettazione di componenti più robusti ma contribuendo anche in maniera significativa alla sfida più che mai attuale di abbattimento dei consumi. La ricerca si è focalizzata sull’analisi CFD delle due tipologie di pompe maggiormente utilizzate in ambito idraulico: le pompe a pistoni, la cui principale caratteristica a cilindrata variabile consente di limitare significativamente le perdite associate al circuito idraulico, e le pompe a ingranaggi, più semplici rispetto alle precedenti ma proprio per questo più robuste e compatte, senza perdere di precisione. In un primo momento è stata eseguita la simulazione di entrambe le macchine, includendo le leggi del moto dei singoli componenti e i diversi meati di accoppiamento. Per questi modelli è stata considerata l’ipotesi di “meato ad altezza costante” a causa del carico computazionale già estremamente elevato che influenza notevolmente i tempi di calcolo finali. Sono state inoltre adottate tecniche di modellazione avanzate al fine di riprodurre accuratamente i movimenti delle parti, sfruttando l’approccio Overset Mesh per far fronte alla variabilità nell’orientamento e nella forma delle corrispondenti regioni di fluido. I modelli numerici hanno permesso di predire con sufficiente accuratezza il funzionamento di entrambe le unità e di analizzare gli effetti prodotti dall’utilizzo di oli biodegradabili sul rendimento di una pompa ad ingranaggi esterni in relazione ad un olio minerale comunemente utilizzato. Successivamente è stata implementata una nuova metodologia CFD per valutare la micro-dinamica di ciascun componente della pompa in risposta alle forze e ai momenti esterni prodotti per effetto dell’interazione con le altre parti e con il fluido di esercizio. In particolare, è stato adottato un approccio DFBI per analizzare l’accoppiamento tra pattino e piatto oscillante all’interno di una pompa a pistoni assiali in diverse condizioni operative. Le simulazioni hanno evidenziato l’interazione reciproca tra la distribuzione della pressione all’interno del meato e il movimento del pattino, consentendo così di prevedere la portanza idrodinamica e l’insorgere di possibili aree di contatto tra le parti. Sono stati inoltre presentati i risultati relativi a due architetture di pattino, vale a dire il pattino a singola tenuta e il pattino con scanalatura ventilata, evidenziando comportamenti differenti in termini sia di dinamica sia di trafilamenti. Questo modello, seppur sviluppato su una particolare tipologia di interfaccia, si fonda su proprietà comuni a molti accoppiamenti idrodinamici nell’ambito di pompe e motori idrostatici e, per questo motivo, potrà rivelarsi uno strumento utile all’analisi di qualsiasi interfaccia di lubrificazione. Infine, a completamento della Tesi, è stato dato uno sguardo al futuro della simulazione fluidodinamica mettendo a confronto l’ormai consolidato approccio CFD al codice SPH, una nuova metodologia per l’analisi di flussi multifase complessi caratterizzata da un minor carico computazionale e tempi di calcolo ridotti rispetto ai metodi tradizionali. Ciò ha quindi suscitato un crescente interesse nell’ambito della ricerca. Nel dettaglio, è stato condotto un confronto numerico-sperimentale su uno specifico banco prova di una trasmissione per veicoli off-highway al fine di delineare i vantaggi e gli svantaggi di entrambi gli algoritmi nella simulazione dei flussi multifase.
Metodologie CFD innovative per la caratterizzazione di pompe e motori idrostatici in condizioni dinamiche di funzionamento / Gabriele Muzzioli , 2023 Mar 23. 35. ciclo, Anno Accademico 2021/2022.
Metodologie CFD innovative per la caratterizzazione di pompe e motori idrostatici in condizioni dinamiche di funzionamento
MUZZIOLI, GABRIELE
2023
Abstract
The objective of this Thesis is the development of three-dimensional numerical methodologies for the performance prediction of hydrostatic pumps and motors to further investigate the effects of the internal fluid dynamics on the volumetric efficiency of the real machines. These tools will hopefully become an integral part of the industrial process, not only supporting the design of more robust components but also significantly contributing to the current challenge of reducing consumptions. In details, the research focused on the CFD analysis of the most used pump architectures in hydraulics: the piston pumps, whose variable displacement characteristic normally leads to a significant reduction of the power losses associated with the hydraulic system, and the gear pumps, much simpler than the others but for this reason more robust and compact, without losing of precision. At first, the simulation of both machines was performed, including all the characteristic dynamics and the coupling clearances, which mainly affect the volumetric flow losses of the pumps. The simplified "constant gap" hypothesis was considered for these models due to the already high computational load, with remarkable effects on the final simulation time. Advanced modelling techniques have been adopted to accurately reproduce the motions of the internal parts and the Overset Mesh approach was exploited to address the variable orientation and shape of the corresponding fluid regions. The numerical models allowed predicting the operation of both units with sufficient accuracy and the effects of biodegradable oils on the efficiency of an external gear pump were observed with respect to a common mineral oil. Subsequently, a new CFD methodology was implemented to evaluate the micro-dynamics of the single components of the pump in response to the external forces and moments produced by the interaction with the other parts and with the operating fluid. In this work, a Dynamic Fluid Body Interaction (DFBI) approach was adopted to investigate the slipper-swash plate coupling under different operating conditions of the axial piston pump. The simulations were able to highlight the mutual interaction between the pressure distribution inside the gap and the motion of the slipper, thus allowing to predict the hydrodynamic lift and the possible contact between parts. Moreover, the results were discussed for two slipper designs, namely the single land slipper and the vented grooved slipper, and different behaviours in terms of both dynamics and flow losses were obtained. Despite being developed on a specific interface, the proposed numerical model relies on common features of the many hydrodynamic couplings within pumps and motors. Therefore, it may represent an important tool for the analysis of any lubricating interface. Finally, as a conclusion of this Thesis, the future of fluid dynamics simulation was discussed by comparing the reliable CFD approach with the SPH (‘Smoothed-Particle Hydrodynamics’) code, a new methodology for the analysis of complex multiphase flows with reduced effort and lower computational times with respect to traditional methods, thus receiving more and more interest over the last few years among researchers. In details, a comparison between numerical and experimental results was performed by means of a specific mock-up for off-highway vehicles transmissions to outline the pros and the cons of both algorithms in simulating multiphase flows.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Muzzioli.pdf
embargo fino al 22/03/2026
Descrizione: Tesi definitiva Muzzioli Gabriele
Tipologia:
Tesi di dottorato
Dimensione
5.69 MB
Formato
Adobe PDF
|
5.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris