Nowadays, the environmental problem most feared by our society and, in particular, by the new generations, is climate change. Its devastating effects can be felt by every person almost daily, with winters that are increasingly mild and not very rainy, summers characterized by violent and short thunderstorms alternating with dry and torrid periods. The effects of climate change are visible on a global scale, and it is precisely the vast territorial impact that unites activists around the world. If attention is shifted to local-scale effects, it is the pollution of the ecosystem that is of greatest concern to people along with climate change. The widespread diffusion of the phenomenon within all environmental compartments casts suspicion on the air that is breathed, the food that is eaten and the water that is drunk. In addition, people are wary of chemicals or fuels used by companies because of the ever growing potential effects on human health, once these substances have reached the final "target". Several physical and mathematical models have been developed in order to provide an answer to the dispersion problem, trying to increase knowledge about the pathways of substances into ecosystem once they have been emitted into environment. These models, according to their accuracy and completeness, can take into account substance-specific characteristics, although there are inevitably assumptions and simplifications, due to the complexity of the phenomenon of dispersion in the whole ecosystem. The Life Cycle Assessment (LCA) methodology provides a response to the damage caused by these emissions, through the implementation of models that assess toxicological and carcinogenic effects on human health and on the ecosystem in general based on the dose-response correlation. These models, which, first of all, estimate the migration of pollutants, in addition to the effect assessment, represent a first attempt to represent the reality, as the local dimension of the effects is not yet fully considered or it is limited to certain environmental compartments. The current study addresses the above issues, aiming at enhancing the modelling of the dispersion of pollutants at local level and their effects on human health and the ecosystem, from a toxicological point of view. In particular, the core activity is represented by the evaluation of the dispersion of a pollutant in air, water, soil, up to fauna and vegetation and human beings, once it is emitted from a local source. The reference is the box model described in Multimedia Environmental Models by Donald Mackay (2001), integrated, in a second step of the work, with a current calculation method for LCA, USEtox 2.0 (Fantke et al. 2017). The results of the methodological research are put at the service of the LCA methodology, in order to obtain a damage result based on models that take into account the complexity of the substance-specific dispersion process, starting from the input data related to an emission in an environmental compartment. The research activity, applying the LCA to a complex system as the one mentioned above, has the goal to analyse, with case studies and, if possible, in an experimental way, some methodological aspects that have not yet been thoroughly investigated to date. The project is a big challenge to be faced with a Life Cycle Thinking approach, but it is also a great opportunity to study the weak aspects of the current LCA-based environmental assessment models.

Oggi il problema ambientale più temuto dalla nostra società e, in particolare, dalle nuove generazioni, è il cambiamento climatico. I suoi effetti devastanti sono percepibili da ogni persona quasi quotidianamente, con inverni sempre più miti e poco piovosi, estati caratterizzate da violenti e brevi temporali alternati a periodi secchi e torridi. Gli effetti del cambiamento climatico sono visibili su scala globale, ed è proprio il vasto impatto territoriale a unire gli attivisti di tutto il mondo. Se si sposta l'attenzione sugli effetti a scala locale, è l'inquinamento dell'ecosistema a preoccupare maggiormente le persone. La diffusione capillare delle sostanze inquinanti in tutti i comparti ambientali getta sospetti sull'aria che si respira, sul cibo che si mangia e sull'acqua che si beve. Inoltre, le persone diffidano delle sostanze chimiche o dei combustibili utilizzati dalle aziende a causa dei sempre maggiori effetti potenziali sulla salute umana, una volta che queste sostanze hanno raggiunto il "target" finale. Sono stati sviluppati diversi modelli fisici e matematici per fornire una risposta al problema della dispersione, cercando di aumentare le conoscenze sui percorsi delle sostanze nell'ecosistema una volta che sono state emesse nell'ambiente. Questi modelli, in base alla loro accuratezza e completezza, sono in grado di tenere conto delle caratteristiche specifiche delle sostanze, anche se ci sono inevitabilmente assunzioni e semplificazioni, dovute alla complessità del fenomeno della dispersione nell'intero ecosistema. La metodologia del Life Cycle Assessment (LCA) fornisce una risposta ai danni causati da queste emissioni, attraverso l'implementazione di modelli che valutano gli effetti tossicologici e cancerogeni sulla salute umana e sull'ecosistema in generale, sulla base della correlazione dose-risposta. Questi modelli, che innanzitutto stimano la migrazione degli inquinanti, oltre alla valutazione degli effetti, rappresentano un primo tentativo di rappresentare la realtà, in quanto la dimensione locale degli effetti non è ancora pienamente considerata o è limitata a determinati comparti ambientali. Il presente studio affronta le suddette problematiche, con l'obiettivo di migliorare la modellazione della dispersione degli inquinanti a livello locale e dei loro effetti sulla salute umana e sull'ecosistema, da un punto di vista tossicologico. In particolare, l'attività centrale è rappresentata dalla valutazione della dispersione di un inquinante nell'aria, nell'acqua, nel suolo fino alla fauna e vegetezione e all'uomo, una volta emesso da una sorgente locale. Il riferimento è il modello a box descritto in Multimedia Environmental Models di Donald Mackay (2001), integrato, in un secondo step del lavoro, con un attuale metodo di calcolo per l’LCA, USEtox 2.0 (Fantke et al. 2017). I risultati della ricerca metodologica sono messi al servizio della metodologia LCA, per ottenere un risultato di danno basato su modelli che tengono conto della complessità dei processi specifici della sostanza, a partire dai dati di input relativi a un'emissione in un comparto ambientale. L'attività di ricerca, applicando l’LCA a un sistema complesso come quello sopra citato, ha l'obiettivo di analizzare, con casi di studio e, se possibile, in modo sperimentale, alcuni aspetti metodologici che ad oggi non sono ancora stati approfonditi. Il progetto rappresenta una grande sfida da affrontare con un approccio Life Cycle Thinking, ma anche una grande opportunità per studiare gli aspetti deboli degli attuali modelli di valutazione ambientale basati sull'LCA.

Sviluppi metodologici nell'analisi LCA relativi al modello di dispersione delle sostanze chimiche su scala locale e del modello di valutazione degli effetti sull'ambiente e sulla salute umana / Grazia Maria Cappucci , 2023 Mar 23. 35. ciclo, Anno Accademico 2021/2022.

Sviluppi metodologici nell'analisi LCA relativi al modello di dispersione delle sostanze chimiche su scala locale e del modello di valutazione degli effetti sull'ambiente e sulla salute umana

CAPPUCCI, GRAZIA MARIA
2023

Abstract

Nowadays, the environmental problem most feared by our society and, in particular, by the new generations, is climate change. Its devastating effects can be felt by every person almost daily, with winters that are increasingly mild and not very rainy, summers characterized by violent and short thunderstorms alternating with dry and torrid periods. The effects of climate change are visible on a global scale, and it is precisely the vast territorial impact that unites activists around the world. If attention is shifted to local-scale effects, it is the pollution of the ecosystem that is of greatest concern to people along with climate change. The widespread diffusion of the phenomenon within all environmental compartments casts suspicion on the air that is breathed, the food that is eaten and the water that is drunk. In addition, people are wary of chemicals or fuels used by companies because of the ever growing potential effects on human health, once these substances have reached the final "target". Several physical and mathematical models have been developed in order to provide an answer to the dispersion problem, trying to increase knowledge about the pathways of substances into ecosystem once they have been emitted into environment. These models, according to their accuracy and completeness, can take into account substance-specific characteristics, although there are inevitably assumptions and simplifications, due to the complexity of the phenomenon of dispersion in the whole ecosystem. The Life Cycle Assessment (LCA) methodology provides a response to the damage caused by these emissions, through the implementation of models that assess toxicological and carcinogenic effects on human health and on the ecosystem in general based on the dose-response correlation. These models, which, first of all, estimate the migration of pollutants, in addition to the effect assessment, represent a first attempt to represent the reality, as the local dimension of the effects is not yet fully considered or it is limited to certain environmental compartments. The current study addresses the above issues, aiming at enhancing the modelling of the dispersion of pollutants at local level and their effects on human health and the ecosystem, from a toxicological point of view. In particular, the core activity is represented by the evaluation of the dispersion of a pollutant in air, water, soil, up to fauna and vegetation and human beings, once it is emitted from a local source. The reference is the box model described in Multimedia Environmental Models by Donald Mackay (2001), integrated, in a second step of the work, with a current calculation method for LCA, USEtox 2.0 (Fantke et al. 2017). The results of the methodological research are put at the service of the LCA methodology, in order to obtain a damage result based on models that take into account the complexity of the substance-specific dispersion process, starting from the input data related to an emission in an environmental compartment. The research activity, applying the LCA to a complex system as the one mentioned above, has the goal to analyse, with case studies and, if possible, in an experimental way, some methodological aspects that have not yet been thoroughly investigated to date. The project is a big challenge to be faced with a Life Cycle Thinking approach, but it is also a great opportunity to study the weak aspects of the current LCA-based environmental assessment models.
Methodological developments in the LCA analysis about chemicals dispersion model on local scale and effects evaluation model on the environment and human health
23-mar-2023
FERRARI, Anna Maria
File in questo prodotto:
File Dimensione Formato  
Cappucci PhD thesis_final_converted.pdf

embargo fino al 22/03/2026

Descrizione: Tesi definitiva Cappucci Grazia Maria
Tipologia: Tesi di dottorato
Dimensione 3.84 MB
Formato Adobe PDF
3.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1300908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact