In this note, we address the problem of simulating electromyographic signals arising from muscles involved in facial expressions - markedly those conveying affective information -, by relying solely on facial landmarks detected on video sequences. We propose a method that uses the framework of Gaussian Process regression to predict the facial electromyographic signal from videos where people display non-posed affective expressions. To such end, experiments have been conducted on the OPEN EmoRec II multimodal corpus.

Virtual EMG via Facial Video Analysis / Boccignone, G.; Cuculo, V.; Grossi, G.; Lanzarotti, R.; Migliaccio, R.. - 10484:(2017), pp. 197-207. (Intervento presentato al convegno ICIAP International Conference on Image Analysis and Processing : September, 11-15 tenutosi a Catania nel 2017) [10.1007/978-3-319-68560-1_18].

Virtual EMG via Facial Video Analysis

V. Cuculo;
2017

Abstract

In this note, we address the problem of simulating electromyographic signals arising from muscles involved in facial expressions - markedly those conveying affective information -, by relying solely on facial landmarks detected on video sequences. We propose a method that uses the framework of Gaussian Process regression to predict the facial electromyographic signal from videos where people display non-posed affective expressions. To such end, experiments have been conducted on the OPEN EmoRec II multimodal corpus.
2017
ICIAP International Conference on Image Analysis and Processing : September, 11-15
Catania
2017
10484
197
207
Boccignone, G.; Cuculo, V.; Grossi, G.; Lanzarotti, R.; Migliaccio, R.
Virtual EMG via Facial Video Analysis / Boccignone, G.; Cuculo, V.; Grossi, G.; Lanzarotti, R.; Migliaccio, R.. - 10484:(2017), pp. 197-207. (Intervento presentato al convegno ICIAP International Conference on Image Analysis and Processing : September, 11-15 tenutosi a Catania nel 2017) [10.1007/978-3-319-68560-1_18].
File in questo prodotto:
File Dimensione Formato  
lanzarotti_submission.pdf

Accesso riservato

Dimensione 438.31 kB
Formato Adobe PDF
438.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1300653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact