In this article we address the issue of adopting a local sparse coding representation (Histogram of Sparse Codes), in a part-based framework for inferring the locations of facial landmarks. The rationale behind this approach is that unsupervised learning of sparse code dictionaries from face data can be an effective approach to cope with such a challenging problem. Results obtained on the CMU Multi-PIE Face dataset are presented providing support for this approach.

Using sparse coding for landmark localization in facial expressions / Cuculo, V.; Lanzarotti, R.; Boccignone, G.. - (2014), pp. 1-6. (Intervento presentato al convegno European Workshop on Visual Information Processing (EUVIP) tenutosi a Parigi nel 2014) [10.1109/EUVIP.2014.7018369].

Using sparse coding for landmark localization in facial expressions

V. Cuculo;
2014

Abstract

In this article we address the issue of adopting a local sparse coding representation (Histogram of Sparse Codes), in a part-based framework for inferring the locations of facial landmarks. The rationale behind this approach is that unsupervised learning of sparse code dictionaries from face data can be an effective approach to cope with such a challenging problem. Results obtained on the CMU Multi-PIE Face dataset are presented providing support for this approach.
2014
European Workshop on Visual Information Processing (EUVIP)
Parigi
2014
1
6
Cuculo, V.; Lanzarotti, R.; Boccignone, G.
Using sparse coding for landmark localization in facial expressions / Cuculo, V.; Lanzarotti, R.; Boccignone, G.. - (2014), pp. 1-6. (Intervento presentato al convegno European Workshop on Visual Information Processing (EUVIP) tenutosi a Parigi nel 2014) [10.1109/EUVIP.2014.7018369].
File in questo prodotto:
File Dimensione Formato  
CuculoLanzarottiBoccignone_camera_ready_Euvip2014.pdf

Accesso riservato

Dimensione 5.8 MB
Formato Adobe PDF
5.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1300651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 0
social impact