In this article we address the issue of adopting a local sparse coding representation (Histogram of Sparse Codes), in a part-based framework for inferring the locations of facial landmarks. The rationale behind this approach is that unsupervised learning of sparse code dictionaries from face data can be an effective approach to cope with such a challenging problem. Results obtained on the CMU Multi-PIE Face dataset are presented providing support for this approach.
Using sparse coding for landmark localization in facial expressions / Cuculo, V.; Lanzarotti, R.; Boccignone, G.. - (2014), pp. 1-6. (Intervento presentato al convegno European Workshop on Visual Information Processing (EUVIP) tenutosi a Parigi nel 2014) [10.1109/EUVIP.2014.7018369].
Using sparse coding for landmark localization in facial expressions
V. Cuculo;
2014
Abstract
In this article we address the issue of adopting a local sparse coding representation (Histogram of Sparse Codes), in a part-based framework for inferring the locations of facial landmarks. The rationale behind this approach is that unsupervised learning of sparse code dictionaries from face data can be an effective approach to cope with such a challenging problem. Results obtained on the CMU Multi-PIE Face dataset are presented providing support for this approach.File | Dimensione | Formato | |
---|---|---|---|
CuculoLanzarottiBoccignone_camera_ready_Euvip2014.pdf
Accesso riservato
Dimensione
5.8 MB
Formato
Adobe PDF
|
5.8 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris