Since 2014 the layered semiconductor SnSe in the high-temperature Cmcm phase is known to be the most efficient intrinsic thermoelectric material. Making use of first-principles calculations we show that its vibrational and thermal transport properties are determined by huge nonperturbative anharmonic effects. We show that the transition from the Cmcm phase to the low-symmetry Prima is a second-order phase transition driven by the collapse of a zone border phonon, whose frequency vanishes at the transition temperature. Our calculations show that the spectral function of the in-plane vibrational modes are strongly anomalous with shoulders and double-peak structures. WC calculate the lattice thermal conductivity obtaining good agreement with experiments only when nonperturbative anharmonic scattering is included. Our results suggest that the good thermoelectric efficiency of SnSe is strongly affected by the nonperturbative anharmonicity.

Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe / Aseginolaza, U; Bianco, R; Monacelli, L; Paulatto, L; Calandra, M; Mauri, F; Bergara, A; Errea, I. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 122:7(2019), pp. 075901-075901. [10.1103/PhysRevLett.122.075901]

Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe

Bianco, R;
2019

Abstract

Since 2014 the layered semiconductor SnSe in the high-temperature Cmcm phase is known to be the most efficient intrinsic thermoelectric material. Making use of first-principles calculations we show that its vibrational and thermal transport properties are determined by huge nonperturbative anharmonic effects. We show that the transition from the Cmcm phase to the low-symmetry Prima is a second-order phase transition driven by the collapse of a zone border phonon, whose frequency vanishes at the transition temperature. Our calculations show that the spectral function of the in-plane vibrational modes are strongly anomalous with shoulders and double-peak structures. WC calculate the lattice thermal conductivity obtaining good agreement with experiments only when nonperturbative anharmonic scattering is included. Our results suggest that the good thermoelectric efficiency of SnSe is strongly affected by the nonperturbative anharmonicity.
2019
122
7
075901
075901
Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe / Aseginolaza, U; Bianco, R; Monacelli, L; Paulatto, L; Calandra, M; Mauri, F; Bergara, A; Errea, I. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 122:7(2019), pp. 075901-075901. [10.1103/PhysRevLett.122.075901]
Aseginolaza, U; Bianco, R; Monacelli, L; Paulatto, L; Calandra, M; Mauri, F; Bergara, A; Errea, I
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1299824
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 87
social impact