Contradictory experiments have been reported about the dimensionality effect on the charge-density-wave transition in 2H NbSe2. While scanning tunneling experiments on single layers grown by molecular beam epitaxy measure a charge-density-wave transition temperature in the monolayer similar to the bulk, around 33 K, Raman experiments on exfoliated samples observe a large enhancement of the transition temperature up to 145 K. By employing a nonperturbative approach to deal with anharmonicity, we calculate from first principles the temperature dependence of the phonon spectra both for bulk and monolayer. In both cases, the charge-density-wave transition temperature is estimated as the temperature at which the phonon energy of the mode driving the structural instability vanishes. The obtained transition temperature in the bulk is around 59 K, in rather good agreement with experiments, and it is just slightly increased in the single-layer limit to 73 K, showing the weak dependence of the transition on dimensionality. Environmental factors could motivate the disagreement between the transition temperatures reported by experiments. Our analysis also demonstrates the predominance of ionic fluctuations over electronic ones in the melting of the charge-density-wave order.

Weak Dimensionality Dependence and Dominant Role of Ionic Fluctuations in the Charge-Density-Wave Transition of NbSe2 / Bianco, R; Monacelli, L; Calandra, M; Mauri, F; Errea, I. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 125:10(2020), pp. 106101-106101. [10.1103/PhysRevLett.125.106101]

Weak Dimensionality Dependence and Dominant Role of Ionic Fluctuations in the Charge-Density-Wave Transition of NbSe2

Bianco, R
;
2020

Abstract

Contradictory experiments have been reported about the dimensionality effect on the charge-density-wave transition in 2H NbSe2. While scanning tunneling experiments on single layers grown by molecular beam epitaxy measure a charge-density-wave transition temperature in the monolayer similar to the bulk, around 33 K, Raman experiments on exfoliated samples observe a large enhancement of the transition temperature up to 145 K. By employing a nonperturbative approach to deal with anharmonicity, we calculate from first principles the temperature dependence of the phonon spectra both for bulk and monolayer. In both cases, the charge-density-wave transition temperature is estimated as the temperature at which the phonon energy of the mode driving the structural instability vanishes. The obtained transition temperature in the bulk is around 59 K, in rather good agreement with experiments, and it is just slightly increased in the single-layer limit to 73 K, showing the weak dependence of the transition on dimensionality. Environmental factors could motivate the disagreement between the transition temperatures reported by experiments. Our analysis also demonstrates the predominance of ionic fluctuations over electronic ones in the melting of the charge-density-wave order.
2020
125
10
106101
106101
Weak Dimensionality Dependence and Dominant Role of Ionic Fluctuations in the Charge-Density-Wave Transition of NbSe2 / Bianco, R; Monacelli, L; Calandra, M; Mauri, F; Errea, I. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 125:10(2020), pp. 106101-106101. [10.1103/PhysRevLett.125.106101]
Bianco, R; Monacelli, L; Calandra, M; Mauri, F; Errea, I
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1299818
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 42
social impact