Carbyne, an infinite-length straight chain of carbon atoms, is supposed to undergo a second order phase transition from the metallic bond-symmetric cumulene (=C=C=)(infinity), toward the distorted insulating polyyne chain (-C C-)(infinity), displaying bond-length alternation. However, recent synthesis of ultra long carbon chains (similar to 6000 atoms, [Nat. Mater., 2016, 15, 634]) did not show any phase transition and detected only the polyyne phase, in agreement with previous experiments on capped finite carbon chains. Here, by performing first-principles calculations, we show that quantum-anharmonicity reduces the energy gain of the polyyne phase with respect to the cumulene one by 71%. The magnitude of the bond-length alternation increases by increasing temperature, in stark contrast with a second order phase transition, confining the cumulene-to-polyyne transition to extremely high and unphysical temperatures. Finally, we predict that a high temperature insulator-to-metal transition occurs in the polyyne phase confined in insulating nanotubes with sufficiently large dielectric constant due to a giant quantum-anharmonic bandgap renormalization.
Dominant Role of Quantum Anharmonicity in the Stability and Optical Properties of Infinite Linear Acetylenic Carbon Chains / Romanin, D; Monacelli, L; Bianco, R; Errea, I; Mauri, F; Calandra, M. - In: THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS. - ISSN 1948-7185. - 12:42(2021), pp. 10339-10345. [10.1021/acs.jpclett.1c02964]
Dominant Role of Quantum Anharmonicity in the Stability and Optical Properties of Infinite Linear Acetylenic Carbon Chains
Bianco, R;
2021
Abstract
Carbyne, an infinite-length straight chain of carbon atoms, is supposed to undergo a second order phase transition from the metallic bond-symmetric cumulene (=C=C=)(infinity), toward the distorted insulating polyyne chain (-C C-)(infinity), displaying bond-length alternation. However, recent synthesis of ultra long carbon chains (similar to 6000 atoms, [Nat. Mater., 2016, 15, 634]) did not show any phase transition and detected only the polyyne phase, in agreement with previous experiments on capped finite carbon chains. Here, by performing first-principles calculations, we show that quantum-anharmonicity reduces the energy gain of the polyyne phase with respect to the cumulene one by 71%. The magnitude of the bond-length alternation increases by increasing temperature, in stark contrast with a second order phase transition, confining the cumulene-to-polyyne transition to extremely high and unphysical temperatures. Finally, we predict that a high temperature insulator-to-metal transition occurs in the polyyne phase confined in insulating nanotubes with sufficiently large dielectric constant due to a giant quantum-anharmonic bandgap renormalization.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris