Mimicking the appearance of the real world is a longstanding goal of computer graphics, with several important applications in the feature film, architecture and medical industries. Images with well-designed shading are an important tool for conveying information about the world, be it the shape and function of a computer-aided design (CAD) model, or the mood of a movie sequence. However, authoring this content is often a tedious task, even if undertaken by groups of highly trained and experienced artists. Unsurprisingly, numerous methods to facilitate and accelerate this appearance editing task have been proposed, enabling the editing of scene objects' appearances, lighting and materials, as well as entailing the introduction of new interaction paradigms and specialized preview rendering techniques. In this review, we provide a comprehensive survey of artistic appearance, lighting and material editing approaches. We organize this complex and active research area in a structure tailored to academic researchers, graduate students and industry professionals alike. In addition to editing approaches, we discuss how user interaction paradigms and rendering back ends combine to form usable systems for appearance editing. We conclude with a discussion of open problems and challenges to motivate and guide future research. Mimicking the appearance of the real world is a longstanding goal of computer graphics, with several important applications in the feature film, architecture and medical industries. Images with well-designed shading are an important tool for conveying information about the world, be it the shape and function of a computer-aided design (CAD) model, or the mood of a movie sequence. However, authoring this content is often a tedious task, even if undertaken by groups of highly trained and experienced artists. Unsurprisingly, numerous methods to facilitate and accelerate this appearance editing task have been proposed, enabling the editing of scene objects' appearances, lighting and materials, as well as entailing the introduction of new interaction paradigms and specialized preview rendering techniques. In this review we provide a comprehensive survey of artistic appearance, lighting, and material editing approaches. We organize this complex and active research area in a structure tailored to academic researchers, graduate students, and industry professionals alike. In addition to editing approaches, we discuss how user interaction paradigms and rendering backends combine to form usable systems for appearance editing. We conclude with a discussion of open problems and challenges to motivate and guide future research. © 2015 The Eurographics Association and John Wiley & Sons Ltd.
State of the art in artistic editing of appearance, lighting and material / Schmidt, Thorsten Walther; Pellacini, Fabio; Nowrouzezahrai, Derek; Jarosz, Wojciech; Dachsbacher, Carsten. - In: COMPUTER GRAPHICS FORUM. - ISSN 0167-7055. - 35:1(2016), pp. 216-233. [10.1111/cgf.12721]
State of the art in artistic editing of appearance, lighting and material
PELLACINI, FABIO;
2016
Abstract
Mimicking the appearance of the real world is a longstanding goal of computer graphics, with several important applications in the feature film, architecture and medical industries. Images with well-designed shading are an important tool for conveying information about the world, be it the shape and function of a computer-aided design (CAD) model, or the mood of a movie sequence. However, authoring this content is often a tedious task, even if undertaken by groups of highly trained and experienced artists. Unsurprisingly, numerous methods to facilitate and accelerate this appearance editing task have been proposed, enabling the editing of scene objects' appearances, lighting and materials, as well as entailing the introduction of new interaction paradigms and specialized preview rendering techniques. In this review, we provide a comprehensive survey of artistic appearance, lighting and material editing approaches. We organize this complex and active research area in a structure tailored to academic researchers, graduate students and industry professionals alike. In addition to editing approaches, we discuss how user interaction paradigms and rendering back ends combine to form usable systems for appearance editing. We conclude with a discussion of open problems and challenges to motivate and guide future research. Mimicking the appearance of the real world is a longstanding goal of computer graphics, with several important applications in the feature film, architecture and medical industries. Images with well-designed shading are an important tool for conveying information about the world, be it the shape and function of a computer-aided design (CAD) model, or the mood of a movie sequence. However, authoring this content is often a tedious task, even if undertaken by groups of highly trained and experienced artists. Unsurprisingly, numerous methods to facilitate and accelerate this appearance editing task have been proposed, enabling the editing of scene objects' appearances, lighting and materials, as well as entailing the introduction of new interaction paradigms and specialized preview rendering techniques. In this review we provide a comprehensive survey of artistic appearance, lighting, and material editing approaches. We organize this complex and active research area in a structure tailored to academic researchers, graduate students, and industry professionals alike. In addition to editing approaches, we discuss how user interaction paradigms and rendering backends combine to form usable systems for appearance editing. We conclude with a discussion of open problems and challenges to motivate and guide future research. © 2015 The Eurographics Association and John Wiley & Sons Ltd.File | Dimensione | Formato | |
---|---|---|---|
Schmidt_State_2016.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
7.03 MB
Formato
Adobe PDF
|
7.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris