Plasmonic metal nanoparticles exhibit large dipole moments upon photoexcitation and have the potential to induce electronic transitions in nearby materials, but fast internal relaxation has to date limited the spatial range and efficiency of plasmonic mediated processes. In this work, we use photo-electrochemistry to synthesize hybrid nanoantennas comprised of plasmonic nanoparticles with photoconductive polymer coatings. We demonstrate that the formation of the conductive polymer is selective to the nanoparticles and that polymerization is enhanced by photoexcitation. In situ spectroscopy and simulations support a mechanism in which up to 50% efficiency of nonradiative energy transfer is achieved. These hybrid nanoantennas combine the unmatched light-harvesting properties of a plasmonic antenna with the similarly unmatched device processability of a polymer shell.

Plasmon Energy Transfer in Hybrid Nanoantennas / Collins, S. S. E.; Searles, E. K.; Tauzin, L. J.; Lou, M.; Bursi, L.; Liu, Y.; Song, J.; Flatebo, C.; Baiyasi, R.; Cai, Y. -Y.; Foerster, B.; Lian, T.; Nordlander, P.; Link, S.; Landes, C. F.. - In: ACS NANO. - ISSN 1936-0851. - 15:6(2021), pp. 9522-9530. [10.1021/acsnano.0c08982]

Plasmon Energy Transfer in Hybrid Nanoantennas

Bursi L.;
2021

Abstract

Plasmonic metal nanoparticles exhibit large dipole moments upon photoexcitation and have the potential to induce electronic transitions in nearby materials, but fast internal relaxation has to date limited the spatial range and efficiency of plasmonic mediated processes. In this work, we use photo-electrochemistry to synthesize hybrid nanoantennas comprised of plasmonic nanoparticles with photoconductive polymer coatings. We demonstrate that the formation of the conductive polymer is selective to the nanoparticles and that polymerization is enhanced by photoexcitation. In situ spectroscopy and simulations support a mechanism in which up to 50% efficiency of nonradiative energy transfer is achieved. These hybrid nanoantennas combine the unmatched light-harvesting properties of a plasmonic antenna with the similarly unmatched device processability of a polymer shell.
2021
15
6
9522
9530
Plasmon Energy Transfer in Hybrid Nanoantennas / Collins, S. S. E.; Searles, E. K.; Tauzin, L. J.; Lou, M.; Bursi, L.; Liu, Y.; Song, J.; Flatebo, C.; Baiyasi, R.; Cai, Y. -Y.; Foerster, B.; Lian, T.; Nordlander, P.; Link, S.; Landes, C. F.. - In: ACS NANO. - ISSN 1936-0851. - 15:6(2021), pp. 9522-9530. [10.1021/acsnano.0c08982]
Collins, S. S. E.; Searles, E. K.; Tauzin, L. J.; Lou, M.; Bursi, L.; Liu, Y.; Song, J.; Flatebo, C.; Baiyasi, R.; Cai, Y. -Y.; Foerster, B.; Lian, T.; Nordlander, P.; Link, S.; Landes, C. F.
File in questo prodotto:
File Dimensione Formato  
Collins_Searles_Bursi_Nordlander_Link_Landes_Plasmon_energy_transfer_in_hybrid_nanoantennas_ACSNano_2021.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1298825
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 34
social impact