We prove scaling invariant Gagliardo–Nirenberg type inequalities of the form (Formula Presented) involving fractional Sobolev norms with s > 0 and Coulomb type energies with 0 < α < d and q ≥ 1. We establish optimal ranges of parameters for the validity of such inequalities and discuss the existence of the optimizers. In the special case p = 2d/d-2s our results include a new refinement of the fractional Sobolev inequality by a Coulomb term. We also prove that if the radial symmetry is taken into account, then the ranges of validity of the inequalities could be extended and such a radial improvement is possible if and only if α > 1.
Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces / Bellazzini, J.; Ghimenti, M.; Mercuri, C.; Moroz, V.; Van Schaftingen, J.. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 370:11(2018), pp. 8285-8310. [10.1090/tran/7426]
Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces
Ghimenti M.;Mercuri C.;
2018
Abstract
We prove scaling invariant Gagliardo–Nirenberg type inequalities of the form (Formula Presented) involving fractional Sobolev norms with s > 0 and Coulomb type energies with 0 < α < d and q ≥ 1. We establish optimal ranges of parameters for the validity of such inequalities and discuss the existence of the optimizers. In the special case p = 2d/d-2s our results include a new refinement of the fractional Sobolev inequality by a Coulomb term. We also prove that if the radial symmetry is taken into account, then the ranges of validity of the inequalities could be extended and such a radial improvement is possible if and only if α > 1.File | Dimensione | Formato | |
---|---|---|---|
tran_2F7426.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
389.7 kB
Formato
Adobe PDF
|
389.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris