In this paper we prove existence and multiplicity of positive and sign-changing solutions to the pure critical exponent problem for the p-Laplacian operator with Dirichlet boundary conditions on a bounded domain having nontrivial topology and discrete symmetry. Pioneering works related to the case p = 2 are Brezis and Nirenberg (Comm Pure Appl Math 36, 437-477, 1983), Coron (C R Acad Sci Paris Sr I Math 299, 209-212, 1984), and Bahri and Coron (Comm. Pure Appl. Math. 41, 253-294, 1988). A global compactness analysis is given for the Palais-Smale sequences in the presence of symmetries. © 2013 Springer-Verlag Berlin Heidelberg.

On the pure critical exponent problem for the p-Laplacian / Mercuri, C.; Pacella, F.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 49:3-4(2014), pp. 1075-1090. [10.1007/s00526-013-0612-x]

On the pure critical exponent problem for the p-Laplacian

Mercuri C.;
2014

Abstract

In this paper we prove existence and multiplicity of positive and sign-changing solutions to the pure critical exponent problem for the p-Laplacian operator with Dirichlet boundary conditions on a bounded domain having nontrivial topology and discrete symmetry. Pioneering works related to the case p = 2 are Brezis and Nirenberg (Comm Pure Appl Math 36, 437-477, 1983), Coron (C R Acad Sci Paris Sr I Math 299, 209-212, 1984), and Bahri and Coron (Comm. Pure Appl. Math. 41, 253-294, 1988). A global compactness analysis is given for the Palais-Smale sequences in the presence of symmetries. © 2013 Springer-Verlag Berlin Heidelberg.
2014
49
3-4
1075
1090
On the pure critical exponent problem for the p-Laplacian / Mercuri, C.; Pacella, F.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 49:3-4(2014), pp. 1075-1090. [10.1007/s00526-013-0612-x]
Mercuri, C.; Pacella, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1295809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact