Motivated by existence results for positive solutions of non-autonomous nonlinear Schrödinger-Poisson systems with potentials possibly unbounded or vanishing at infinity, we prove embedding theorems for weighted Sobolev spaces. We both consider a general framework and spaces of radially symmetric functions when assuming radial symmetry of the potentials. © 2011 Elsevier Inc.

Embedding theorems and existence results for nonlinear Schrödinger-Poisson systems with unbounded and vanishing potentials / Bonheure, D.; Mercuri, C.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 251:4-5(2011), pp. 1056-1085. [10.1016/j.jde.2011.04.010]

Embedding theorems and existence results for nonlinear Schrödinger-Poisson systems with unbounded and vanishing potentials

Mercuri C.
2011

Abstract

Motivated by existence results for positive solutions of non-autonomous nonlinear Schrödinger-Poisson systems with potentials possibly unbounded or vanishing at infinity, we prove embedding theorems for weighted Sobolev spaces. We both consider a general framework and spaces of radially symmetric functions when assuming radial symmetry of the potentials. © 2011 Elsevier Inc.
2011
251
4-5
1056
1085
Embedding theorems and existence results for nonlinear Schrödinger-Poisson systems with unbounded and vanishing potentials / Bonheure, D.; Mercuri, C.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 251:4-5(2011), pp. 1056-1085. [10.1016/j.jde.2011.04.010]
Bonheure, D.; Mercuri, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1295808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 41
social impact