We present a unified framework ensuring well posedness and providing stability estimates to a class of Initial – Boundary Value Problems for renewal equations comprising a variety of biological or epidemiological models. This versatility is achieved considering fairly general – possibly non linear and/or non local – interaction terms, allowing both low regularity assumptions and independent variables with or without a boundary. In particular, these results also apply, for instance, to a model for the spreading of a Covid like pandemic or other epidemics. Further applications are shown to be covered by the present setting.

General renewal equations motivated by biology and epidemiology / Colombo, R. M.; Garavello, M.; Marcellini, F.; Rossi, E.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 354:(2023), pp. 133-169. [10.1016/j.jde.2023.01.012]

General renewal equations motivated by biology and epidemiology

Rossi, E.
2023

Abstract

We present a unified framework ensuring well posedness and providing stability estimates to a class of Initial – Boundary Value Problems for renewal equations comprising a variety of biological or epidemiological models. This versatility is achieved considering fairly general – possibly non linear and/or non local – interaction terms, allowing both low regularity assumptions and independent variables with or without a boundary. In particular, these results also apply, for instance, to a model for the spreading of a Covid like pandemic or other epidemics. Further applications are shown to be covered by the present setting.
2023
354
133
169
General renewal equations motivated by biology and epidemiology / Colombo, R. M.; Garavello, M.; Marcellini, F.; Rossi, E.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 354:(2023), pp. 133-169. [10.1016/j.jde.2023.01.012]
Colombo, R. M.; Garavello, M.; Marcellini, F.; Rossi, E.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S002203962300013X-main.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 485 kB
Formato Adobe PDF
485 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1295328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact