Motivated by the identification of complex dependencies in biological networks, we present a Bayesian method for structural learning of graphical models that exhibits two distinctive features: i) it does not assume a priori an ordering of the variables, but it learns arrows when possible and lines otherwise; ii) it assumes that the observations form subgroups having different but similar structures.

Multiple arrows in the Bayesian quiver: Bayesian learning of partially directed structures from heterogeneous data / La Rocca, Luca; Castelletti, Federico; Peluso, Stefano; Stingo, Francesco Claudio; Consonni, Guido. - (2022), pp. 838-843. (Intervento presentato al convegno 51st Scientific Meeting of the Italian Statistical Society tenutosi a Caserta nel 22–24 giugno 2022).

Multiple arrows in the Bayesian quiver: Bayesian learning of partially directed structures from heterogeneous data.

La Rocca, Luca;
2022

Abstract

Motivated by the identification of complex dependencies in biological networks, we present a Bayesian method for structural learning of graphical models that exhibits two distinctive features: i) it does not assume a priori an ordering of the variables, but it learns arrows when possible and lines otherwise; ii) it assumes that the observations form subgroups having different but similar structures.
2022
51st Scientific Meeting of the Italian Statistical Society
Caserta
22–24 giugno 2022
838
843
La Rocca, Luca; Castelletti, Federico; Peluso, Stefano; Stingo, Francesco Claudio; Consonni, Guido
Multiple arrows in the Bayesian quiver: Bayesian learning of partially directed structures from heterogeneous data / La Rocca, Luca; Castelletti, Federico; Peluso, Stefano; Stingo, Francesco Claudio; Consonni, Guido. - (2022), pp. 838-843. (Intervento presentato al convegno 51st Scientific Meeting of the Italian Statistical Society tenutosi a Caserta nel 22–24 giugno 2022).
File in questo prodotto:
File Dimensione Formato  
3570-10001-1-SM.pdf

Accesso riservato

Descrizione: Articolo principale
Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 126.44 kB
Formato Adobe PDF
126.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1295309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact