We contribute to the discussion of the paper by Ni et al. (Stat Methods Appl, 2021. https://doi.org/10.1007/s10260-021-00572-8) by focusing on two aspects: (i) ordering of the variables for directed acyclic graphical models, and (ii) heterogeneity of the data in the presence of covariates. With regard to (i) we claim that an ordering should be assumed only when strongly reliable prior information is available; otherwise one should proceed with an unspecified ordering to guard against order misspecification. Alternatively, one can carry out Bayesian inference on the space of Markov equivalence classes or use a blend of observational and interventional data to alleviate the lack of identification. With regard to (ii) we complement the Authors’ analysis by enlarging the scope to mixed graphs as well as nonparametric Bayesian models.

Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo / Castelletti, F.; Consonni, G.; La Rocca, L.. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - 31:2(2022), pp. 261-267. [10.1007/s10260-021-00601-6]

Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo

La Rocca L.
2022

Abstract

We contribute to the discussion of the paper by Ni et al. (Stat Methods Appl, 2021. https://doi.org/10.1007/s10260-021-00572-8) by focusing on two aspects: (i) ordering of the variables for directed acyclic graphical models, and (ii) heterogeneity of the data in the presence of covariates. With regard to (i) we claim that an ordering should be assumed only when strongly reliable prior information is available; otherwise one should proceed with an unspecified ordering to guard against order misspecification. Alternatively, one can carry out Bayesian inference on the space of Markov equivalence classes or use a blend of observational and interventional data to alleviate the lack of identification. With regard to (ii) we complement the Authors’ analysis by enlarging the scope to mixed graphs as well as nonparametric Bayesian models.
2022
3-nov-2021
31
2
261
267
Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo / Castelletti, F.; Consonni, G.; La Rocca, L.. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - 31:2(2022), pp. 261-267. [10.1007/s10260-021-00601-6]
Castelletti, F.; Consonni, G.; La Rocca, L.
File in questo prodotto:
File Dimensione Formato  
Submitted.pdf

Accesso riservato

Descrizione: Submitted Comment
Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 230.21 kB
Formato Adobe PDF
230.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1295306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact