: We present a method to efficiently combine the computation of electron-electron and electron-phonon self-energies, which enables the evaluation of electron-phonon coupling at the G0W0 level of theory for systems with hundreds of atoms. In addition, our approach, which is a generalization of a method recently proposed for molecules [J. Chem. Theory Comput. 2018, 14, 6269-6275], enables the inclusion of nonadiabatic and temperature effects at no additional computational cost. We present results for diamond and defects in diamond and discuss the importance of numerically accurate G0W0 band structures to obtain robust predictions of zero point renormalization (ZPR) of band gaps, and of the inclusion of nonadiabatic effects to accurately compute the ZPR of defect states in the band gap.
Combined First-Principles Calculations of Electron-Electron and Electron-Phonon Self-Energies in Condensed Systems / Yang, Han; Govoni, Marco; Kundu, Arpan; Galli, Giulia. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9626. - 17:12(2021), pp. 7468-7476. [10.1021/acs.jctc.1c00605]
Combined First-Principles Calculations of Electron-Electron and Electron-Phonon Self-Energies in Condensed Systems
Govoni, Marco
;
2021
Abstract
: We present a method to efficiently combine the computation of electron-electron and electron-phonon self-energies, which enables the evaluation of electron-phonon coupling at the G0W0 level of theory for systems with hundreds of atoms. In addition, our approach, which is a generalization of a method recently proposed for molecules [J. Chem. Theory Comput. 2018, 14, 6269-6275], enables the inclusion of nonadiabatic and temperature effects at no additional computational cost. We present results for diamond and defects in diamond and discuss the importance of numerically accurate G0W0 band structures to obtain robust predictions of zero point renormalization (ZPR) of band gaps, and of the inclusion of nonadiabatic effects to accurately compute the ZPR of defect states in the band gap.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris