The purpose of this paper is to present the relation between certain BMO-type seminorms and the total variation of SBV functions. Following some ideas of a recent paper by L. Ambrosio and G.E. Comi, we give a representation formula of the total variation of SBV functions which does not make use of the distributional derivatives. We consider an anisotropic variant of the BMO-type seminorm introduced in 2015 in a paper by J. Bourgain, H. Brezis and P. Mironescu, by using, instead of cubes, covering families made by translations of a given open bounded set with Lipschitz boundary.

A formula for the anisotropic total variation of SBV functions / Farroni, Fernando; Fusco, Nicola; GUARINO LO BIANCO, Serena; Schiattarella, Roberta. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 278:9(2020), pp. 1-32. [10.1016/j.jfa.2019.108451]

A formula for the anisotropic total variation of SBV functions

Nicola Fusco;Serena Guarino Lo Bianco;
2020

Abstract

The purpose of this paper is to present the relation between certain BMO-type seminorms and the total variation of SBV functions. Following some ideas of a recent paper by L. Ambrosio and G.E. Comi, we give a representation formula of the total variation of SBV functions which does not make use of the distributional derivatives. We consider an anisotropic variant of the BMO-type seminorm introduced in 2015 in a paper by J. Bourgain, H. Brezis and P. Mironescu, by using, instead of cubes, covering families made by translations of a given open bounded set with Lipschitz boundary.
2020
278
9
1
32
A formula for the anisotropic total variation of SBV functions / Farroni, Fernando; Fusco, Nicola; GUARINO LO BIANCO, Serena; Schiattarella, Roberta. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 278:9(2020), pp. 1-32. [10.1016/j.jfa.2019.108451]
Farroni, Fernando; Fusco, Nicola; GUARINO LO BIANCO, Serena; Schiattarella, Roberta
File in questo prodotto:
File Dimensione Formato  
FarFusGuaSch_JFA_2020.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 508.68 kB
Formato Adobe PDF
508.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1294585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact