We study for the first time a two-phase free boundary problem in which the solution satisfies a Robin boundary condition. We consider the case in which the solution is continuous across the free boundary and we prove an existence and a regularity result for minimizers of the associated variational problem. Finally, in the appendix, we give an example of a class of Steiner symmetric minimizers.

A two-phase problem with Robin conditions on the free boundary / Lo Bianco, S. G.; la Manna, D. A.; Velichkov, B.. - In: JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES. - ISSN 2429-7100. - 8:(2020), pp. 1-25. [10.5802/JEP.139]

A two-phase problem with Robin conditions on the free boundary

Lo Bianco S. G.;
2020-01-01

Abstract

We study for the first time a two-phase free boundary problem in which the solution satisfies a Robin boundary condition. We consider the case in which the solution is continuous across the free boundary and we prove an existence and a regularity result for minimizers of the associated variational problem. Finally, in the appendix, we give an example of a class of Steiner symmetric minimizers.
8
1
25
A two-phase problem with Robin conditions on the free boundary / Lo Bianco, S. G.; la Manna, D. A.; Velichkov, B.. - In: JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES. - ISSN 2429-7100. - 8:(2020), pp. 1-25. [10.5802/JEP.139]
Lo Bianco, S. G.; la Manna, D. A.; Velichkov, B.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1294539
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact