In the paper, in a Hilbert space setting, a random time-dependent oligopolistic market equilibrium problem in presence of both production and demand excesses is studied and the random time-dependent Cournot–Nash equilibrium principle by means of a stochastic variational inequality is characterized. Then, some existence results to such problem are established and the stochastic continuity of the equilibrium solution is proved. Moreover a simple numerical example illustrates the theoretical results.

Stochastic variational formulation for a general random time-dependent economic equilibrium problem / Barbagallo, A.; Guarino Lo Bianco, S.. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - 14:8(2020), pp. 2479-2493. [10.1007/s11590-020-01569-0]

Stochastic variational formulation for a general random time-dependent economic equilibrium problem

Guarino Lo Bianco S.
2020

Abstract

In the paper, in a Hilbert space setting, a random time-dependent oligopolistic market equilibrium problem in presence of both production and demand excesses is studied and the random time-dependent Cournot–Nash equilibrium principle by means of a stochastic variational inequality is characterized. Then, some existence results to such problem are established and the stochastic continuity of the equilibrium solution is proved. Moreover a simple numerical example illustrates the theoretical results.
2020
14
8
2479
2493
Stochastic variational formulation for a general random time-dependent economic equilibrium problem / Barbagallo, A.; Guarino Lo Bianco, S.. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - 14:8(2020), pp. 2479-2493. [10.1007/s11590-020-01569-0]
Barbagallo, A.; Guarino Lo Bianco, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1294535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact