We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p-Laplacian operator on the Heisenberg-Weyl group Hn. Among other results, we prove that the weak solutions to such a class of problems are bounded and Hölder continuous, by also establishing general estimates as fractional Caccioppoli-type estimates with tail and logarithmic-type estimates.
Hölder Continuity and Boundedness Estimates for Nonlinear Fractional Equations in the Heisenberg Group / Manfredini, Maria; Palatucci, Giampiero; Piccinini, Mirco; Polidoro, Sergio. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 33:3(2023), pp. 1-41. [10.1007/s12220-022-01124-6]
Hölder Continuity and Boundedness Estimates for Nonlinear Fractional Equations in the Heisenberg Group
Manfredini, MariaMembro del Collaboration Group
;Polidoro, SergioMembro del Collaboration Group
2023
Abstract
We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p-Laplacian operator on the Heisenberg-Weyl group Hn. Among other results, we prove that the weak solutions to such a class of problems are bounded and Hölder continuous, by also establishing general estimates as fractional Caccioppoli-type estimates with tail and logarithmic-type estimates.File | Dimensione | Formato | |
---|---|---|---|
ManfrediniPalatucciPiccininiPolidoro-ArXiv.pdf
Open access
Descrizione: Preprint
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
412.65 kB
Formato
Adobe PDF
|
412.65 kB | Adobe PDF | Visualizza/Apri |
s12220-022-01124-6.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
541.97 kB
Formato
Adobe PDF
|
541.97 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris