In this paper we implement an e cient non-parametric statistical method, Random survival forests, for the selection of the determinants of Central Bank Independence (CBI) among a large database of political and economic variables for OECD countries. This statistical technique enables us to overcome omitted variables and over tting problems. It turns out that the economic variables are major determinants compared to the political ones and linear and nonlinear e ects of chosen predictors on CBI are found.

Cavicchioli, M., A., Papana, A., Papana Dagiasis e B., Pistoresi. "Determinants of Central Bank Independence: a Random Forest Approach" Working paper, RECENT WORKING PAPER SERIES, Dipartimento di Economia Marco Biagi – Università di Modena e Reggio Emilia, 2016.

Determinants of Central Bank Independence: a Random Forest Approach

Cavicchioli, M.;Pistoresi, B.
2016

Abstract

In this paper we implement an e cient non-parametric statistical method, Random survival forests, for the selection of the determinants of Central Bank Independence (CBI) among a large database of political and economic variables for OECD countries. This statistical technique enables us to overcome omitted variables and over tting problems. It turns out that the economic variables are major determinants compared to the political ones and linear and nonlinear e ects of chosen predictors on CBI are found.
2016
Maggio
Cavicchioli, M.; Papana, A.; Papana Dagiasis, A.; Pistoresi, B.
Cavicchioli, M., A., Papana, A., Papana Dagiasis e B., Pistoresi. "Determinants of Central Bank Independence: a Random Forest Approach" Working paper, RECENT WORKING PAPER SERIES, Dipartimento di Economia Marco Biagi – Università di Modena e Reggio Emilia, 2016.
File in questo prodotto:
File Dimensione Formato  
RECent-wp122.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 309.82 kB
Formato Adobe PDF
309.82 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1293508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact