The paper compares the pseudo real-time forecasting performance of three Dynamic Factor Models: (i) The standard principal-component model, Stock and Watson (2002a), (ii) The model based on generalized principal components, Forni et al. (2005), (iii) The model recently proposed in Forni et al. (2015) and Forni et al. (2016). We employ a large monthly dataset of macroeconomic and financial time series for the US economy, which includes the Great Moderation, the Great Recession and the subsequent recovery. Using a rolling window for estimation and prediction, we find that (iii) neatly outperforms

Forni, M., A., Giovannelli, M., Lippi e S., Soccorsi. "Dynamic Factor model with infinite dimensional factor space: forecasting" Working paper, RECENT WORKING PAPER SERIES, Dipartimento di Economia Marco Biagi – Università di Modena e Reggio Emilia, 2016.

Dynamic Factor model with infinite dimensional factor space: forecasting

Forni, M.;
2016

Abstract

The paper compares the pseudo real-time forecasting performance of three Dynamic Factor Models: (i) The standard principal-component model, Stock and Watson (2002a), (ii) The model based on generalized principal components, Forni et al. (2005), (iii) The model recently proposed in Forni et al. (2015) and Forni et al. (2016). We employ a large monthly dataset of macroeconomic and financial time series for the US economy, which includes the Great Moderation, the Great Recession and the subsequent recovery. Using a rolling window for estimation and prediction, we find that (iii) neatly outperforms
2016
Aprile
Forni, M.; Giovannelli, A.; Lippi, M.; Soccorsi, S.
Forni, M., A., Giovannelli, M., Lippi e S., Soccorsi. "Dynamic Factor model with infinite dimensional factor space: forecasting" Working paper, RECENT WORKING PAPER SERIES, Dipartimento di Economia Marco Biagi – Università di Modena e Reggio Emilia, 2016.
File in questo prodotto:
File Dimensione Formato  
RECent-wp120.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 642.48 kB
Formato Adobe PDF
642.48 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1292915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact